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CHAPTER 1

INYRODUCTION TO WEIBULL ANALYSIS

1.1 OBJECTIVE

The objective of this handbook is to provide an understanding of both the standard and
advanced Weibull techniques that have been developed for failure analysis. The authors intend
that their presentation be such that a novice engineer can perform Weibull analysis after
studying this document.

12 BACKGROUND

Waloddi Weibull delivered his hallmark paper on this subject’ in 1951. He ciaimed that
his distribution, or more specifically his family of distributions, applied to a wide range of
problems. He illustrated this point with seven examples ranging from the yield strength of steel
to the size of adult males born in the British Isles. He claimed that the function “..may
sometimes render good service”. He did not claim that it always worked or even that it was
always the best choice.

Time has shown that Waloddi Weibull was correct in all of these statements and
particularly within the aerospace industry. The initial reaction to his paper in the 1950's and
even the early 1960°s was negative, varying from skepticism to outright rejection. Only after
pioneers in the field experimented with the method and verified its wide application did it
become popular. Today it has many applications in many industries and in particular the
aerospace industry. There are special problems in aerospace and unusual arrays of data. Special
methods had to be developed to apply the Weibull distribution. The authors believe there is a
need for a standard reference for these newer methods as applied within the aerospace industry,
and to industry in general.

1.3 EXAMPLES

The following are examples of aerospace probleras that may be solved with Weibull
analysis. It is the intent of this document to illustrate how to answer these and many similar
questions through Weibull analysis.

* A project engineer reports three failures of his component in service
operations in a eix week period. Questions asked by the Program Manager
are, “How many failures are predicted for the next three months, six
months and one year?”’

. “To order spare parts that may have a two to three year lead time, how
may the number of engine modules that will be returned to a depot be
forecast for three to five years hence month by month?”

. “What effect on maintainability support costs would the addition of the
new split compressor case feature have relative to a full case?”

. “If the new Engineering Change eliminates an existing failure mode, how
many units must be tested for how many hours without any failures to
demonstrate with 90% confidence that the old failure mode has either
been eliminated or significantly improved?”’

1 Weibull, Waloddi (1951). A Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics, pg.
293-297.
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1.4 SCOPE
As treated herein, Weibull analysis application to failure analysis includes:

. Plotting the data

. Interpreting the plot

. Predicting future failures

. Evaluating various plans for corrective actions

. Substantiating engineering changes that correct failure modes.

Data problems and deficiencies are discusred with recowmendations to overcome
deficiencies such as:

Censored data

Mixtures of fajlure modes

Nonzero time origin (t, correction)

No failures

. Extremely small samples

. Strengths and weaknesses of the method.

¢ & 8 @

Statistical and mathematical derivations are presented in Appendices to supplement the
main body of the handbook. There are brief discussions of alternative distributions such as the
log normal. Actual case studies of aircraft engine problems are used for illustration. Where
problems are presented for the reader to solve, answers are supplied. The use of Weibull
distributions in mathematical models and simulations is also described.

1.5 ADVANTAGES OF WEIBULL ANALYSIS

One advantage of Weibull analysis is that it provides a simple graphical solution, The
process consists of plotting a curve and analyzing it. (Figure 1.1). The horizontal scale is some
measure of life, perhaps start/stop cycles, operating time, or gas turbine engine mission cycles.
The vertical scale is the probability of the occurrence of the event. The slope of the line (8) is
particularly significairt and may provide a clue to the physics of the failure in question. The
relationship between various values of the slope and typical failure modes is shown in Figure 1.2.
This type of analysis relating the slope to possible failure modes can be expanded by inspecting
libraries of past Weibull curves.

Another advantage of Weibull analysis is that it may be useful even with inadequaciet in
the data, as will be indicated later in the section. For example, the technique works with small
samples. Methods will be described for identifying mixtures of failures, classes or modes,
problems with the origin being at other than zero time, investigations of alternative scales other
than time, non-serialized parts and components where the time on the part cannot be clearly
identified, and even the construction of a Weibull curve when there are no failures at all, only
success data.

In addition, as there are only a few alternatives to the Weibull, it is not difficult to make
graphic comperisons to determine which distribution best fits the data. Further, if there is
engineering evidence supporting another distribution, this should be considered and weighted
heavily against the Weibull. However, it has been the writers’ experience that the Weibull
distribution most frequently provides the best fit of the type of data experienced in the gas
turbine industry.
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1.6 AGING TIME OR CYCLES

Most applications of Weibull analysis are based on a single failure class or mode from a
single part or component. An ideal application would consist of a sample of 20 to 30 failures.
Except for material characterization laboratory tests, ideal data are rare; usually the analysis is
started with a few failures embedded in a large number of successful, unfailed or censored units.
The age of each part is required. The units of age depend on the part usage and the failure
mode. For example, low and high cycle fatigue may produce cracks leading to rupture. The age
units would be fatigue cycles. The age unit of a jet starier may be the number of engine starts.
Burner and turbine parts may fail as a function of time at high temperature or as the number of
excursions from cold to hot and return. In most cases, knowledge of the physics-of-failure will
provide the age scale. When the units of age are unknown, several age scales must be tried to
determine the best fit.

1.7 FAILURE DISTRIBUTION

The first use of the Weibull plot will be to determine the parameter §, which is known as
the slope, or shape parameter. Beta determines which member of the family of Weibull failure
distributions best fits or describes the data. The failure mode may be any one of the types
represented by the familiar reliability bathtub curve, infant mortality with slopes less than one,
random with slopes of one, and wearout with slopes greater than cone. See Figure 1.2, The
Weibull plot is also inspected to determine the onset of the failure, For example, it may be of
interest to determine the time at which 1% of the population will have failed. This is called B1
life. Alternatively, it may be of interest in determining the time at which one tenth of 1% of the
population will have failed, which is called B.1 life. These values can be read from the curve by
ingpection. See Figure 1.3.

1.8 RISK PREDICTIONS

If the failure occurred in service operations, the responsible engineer will be interested in a
prediction of the number of failures that might be expected over the next three months, six
months, a year, or two years. Methods for making these predictions are treated in Chapter 3. A
typical risk prediction is shown in Table 1.1. This process may provide information on whether
or not the failure mode applies to the entire fleet or to only one portion of the fleet, which is
often called a bateh. After the responsible engineer develops alternative plans for corrective
action, including production rates and retrofit dates, the risk predictions will be repeated. The
decision maker will require these risk predictions in order to select the best course of action.

1.9 ENGINEERING CHANGES AND MAINTENANCE PLAN EVALUATION

Weibull analysis is used to evaluate engineering changes as to their effect on the entire
fleet of engines, Maintenance schedules and plans are also evaluated using Weibull analysis.
These techniques are illustrated in Chapter 6 — Case Histories with Weibull Applications. In
each case the baseline Weibull analysis is conducted without the engineering change or
maintenance change. The study is then repeated with the estimated effect of the change
modifying the Weibull curve. The difference in the two risk predictions represents the net effect
of the change. The risk parameters may be the predicted number of failures, life cycle cost,
depot loading, spare parts usage, hazard rate, or aircraft availability.
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TABLE 1.1. WEIBULL RISK
FORECAST

Risk Prediction for 12 Months
Beginning July 1978

1177 0.00 more failures in 0O months
15.12 3.35 more failures in 1 month
19.18 1.41 more failures in 2 months
2407 12.30 moye failurea in 3 months
29.87 18.10 more failures in 4 months
36.69 2492 more failures iIn 5 months
44.60 32.83 more failures in 6 months
53.68 41.91 more fatlures in 7 months
63.97 62.20 more failures in 8 months
75.68 63,76 more failures in 9 months
88.35 76.58 more failures in 10 months
102.42 80.66 more faflurea in 11 months

117.69 105.92 more failures in 12 months

What if? — Corrective action next month, next
year

1.10 MATHEMATICAL MODELS

Mathematical models of an entire engine system including its control system may be
produced by combining the effects of several hundred failure modes. The combination may be
done by Monte Carlo simulation or by analytical methods. These models have been useful for
predicting spare parts usage, availability, module returns to depot, and maintainability support
costs. Generally, these models are updated with the latest Weibulls once or twice a year and
predictions are regenerated for review.

111 WEIBULLS WITH CUSPS OR CURVES

The Weibull plot should be inspected to determine how well the failure data fit the
straight line. The scatter should be evenly distributed about the line. However, sometimes the
failure points will not fall en a straight line on the Weibull plot, and modification of the simple
Weibull approach may be required. The bad fit may relate to the physics of the failure or to the
quality of the data. There are at least two reasons why a bad fit may occur, First, the origin — If
the points fall on gentle curves, it may be that the origin of the age scale is not located at zero
See Figure 1.4, There may be physical reasons why this will be true. For example, with roller
hearing unbalance, it may take a minimum amount of time for the wobbling roller te destroy the
cage. This would lead to an origin correction equal to the minimum time. The origin correction
may be either positive or negative. A procedure for determining the origin correction is given in
Chapter 2.

Second, a mixture of failure modes — Sometimes the plot of the failure points will show
cusps In sharp corners. This is an indication that there is more than one failure mode, i.e. a
mixture of failure modes, See Figure 1.5. In this case it is necegsary to conduct a laboratory
failure analysis of each failure to determine if separate failure modes are present. If this is found
to be the case, then separate Weibull plots are made for each set of data for each failure mode, If
the laboratory analysis suecessfully categorized the failures into separate failure modes, the
separate Weibull plots will show straight line fits, that is, very little data scatter. On each plot
the failure data points from the other failure modes are treated as successful (censored or non-
failure) units.
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1.12 SYSTEM WEIBULLS

If the data from a system such as a jet engine are not adequate to plot individual failure
medes, it is tempting to plot a single Weibull for the system based on mean-time-between-
failures (MFBF), assuming # = 1. This approach is fraught with difficulties and should be
avoided if possible. However, there may be no alternative if the system does not have serialized
part identification or the data do not identify the type of failure for each failure time. Some
years ago it was popular to produce system Weibulls for the useful life period (Figure 1.8)
assuming constant failure rate (8 = 1.0). Electronic systems that do not have wearout modes
were often analyzed in this manner. More recently, some studies indicate electronics may have a
decreasing failure rate, i.e. a 8 of less than one.! Although data deficiencies may force the use of
system Weibull analysis, a math model combining individual Weibull modes is preferred
because it will be more useful and aceurate.

1,13 NO-FAILURE WEIBULLS

In some cases, there is a need for &8 Weibull plot even when no failures have occurred. For
example, if an engineering change or a maintenance plan modification is made to correct a
failure mode experienced in service, how much success time is required before it can be stated
(with some level of confidence) that the problem has been corrected. When parts approach or
exceed their predicted design life, it may be possible to extend their predicted life by
constructing a Weibull for evaluation even though no failures have occurred. A method called
Weibayes analysis has been developed for this purpose and is presented in Chapter 4. Methods
to design experiments to substantiate new designs using Weibayes theory are presented in
Chapter 5 — Substantiation and Reliability Testing.

1.14 SMALL FAILURE SAMPLE WEIBULLS

Flight safety considerations may require using samples as small as two or three units.
Weibull analysis, like any statistical analysis, is less precise with small samples, To evaluate
these small-sample problems, extensive Monte Carlo and analytical studies have been made and
will be presented in Appendix F. In general, small sample estimates of g tend to be too high (or
steep) and the characteristic life, 5, tends to be low. See Figure 1.7,

1.15 CHANGING WEIBULLS

After the initial Weibull plot is made, later plots will be based on larger failure samples
and more time on successful units. Each plot will be slightly different, but gradually the Weibull
parameters will stabilize as the data sample increases. The important inferences about B.1 life
and the risk predictions are that they should not change significantly with a moderate size
sample.

! “TInified Field (Failure) Theory-Demise of the Bathtub Curve", Kam LiWong, 1981 Proceedings Annual Reliability

and Maintainability Symposium.

10
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1.16 ESTABLISHING THE WEIBULL LINE

The standard approach for constructing Weibull plots is to plot the time-to-failure data on
Weibull probability graphs using median rank plotting positions as described in Chapter 2. A
straight line i3 then fit to the data to cbtain estimates of 8 and ». This approach has some
deficiencies as noted above for.small samples but is simple and graphical. Maximum likelihood
estimates may be more accurate, but require complex computer routines. The advantages and
disadvantages of these methods are discussed in Appendices C and D.

1.17 SUMMARY
The authors’ intent is that the material in this handbook will provide an understanding of

this valuable tool for aerospace engineers in industry and Government. Constructive comments
would be appreciated for future revisions of this handbook.

13
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CHAPTER 2

PERFORMING A WEIBULL ANALYSIS

2.1 FOREWORD

This section describes how to construct Weibull paper and how to plot the data. Since
interpretation of the data is the most important part of doing an analysis, an extensive
discussion is given on how to interpret a Weibull plot. Examples are used to illustrate
interpretation problems.

The first question to be answered is whether or not the data can be described by a Weibull
distribution. If the data plots on a straight line on Weibull paper, the data can be approximated
by a Weibull distribution,

2.2 WEIBULL PAPER AND IT§ CONSTRUCTION
The Weibull distribution may be defined mathematically as follows:

Ft) =1 — e-((l-“u’h}’

where:
F(t) = fraction failing
"t = failure time
t, = sgtarting point or origin of the distribution
) =  characteristic life or scale parameter
B8 = slope or shape parameter
e =  exponential.

F(t) thus defines the cumulative fraction of a group of parts which will fail by a time t.
Therefore, the fraction of parts which have not failed up to time t is 1 — F(t). This is often
called reliability at time t and is denoted by R(t). By rearranging the distribution function, the
following can be noted:

1 — F(t) =e—((l—!..)h)"
lett, = O

then

1 — Pt) = e™

14
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Y=BX+A

The expression Y = BX + A is the familiar equation for a straight line. By choosing 2n t as
X, the scale on the abscissa, and

fn fn ‘r—-—lftir)

as y, the scale on the ordinate, the cumulative Weibull distribution can be represented as a
straight line. As noted in Tables 2.1, 2.2, and Figure 2.1, Weibull paper can be constructed as
follows:

TABLE 2.1. CONSTRUCTION OF ORDINATE (Y)

ngn —1 — Col 2 Value —

Fit) 1 — F(t) Min Col 2 Value (—6.91)
0.001 —6.91 {0 units

0.01 —4.60 231

¢l -2.25 4,66

0.5 -0.37 6.54

0.9 0.83 774

0.99 1.63 844

0.999 1.93 8.84

TABLE 2.2. CONSTRUCTION
OF ABSCISSA (t)

¢ (hr) n(t)
1 0 units

2 0.69

3 1.10

4 1.39

B 1.61

10 230

16 2.71

20 3.00

100 4,61

1000 6.91

15



LBZ4STAV

sainjied % - 001

e

JadDd nqQiapM Jo uoudnisuo) “I'z aundiy
sayoul (swipp) uj
16°9 Loy e'e oL’} 0
| " Guewy, -
0001 00L ol L
S [[LLLRIL L |/ R | [N b
=4
Uk
up ]
uny
99’y |- oo — 00t
g = ado|g .
ui =__ . % (X)
759 | -
- - - o -—72'¢9
\ _ “ul | i -
JA =
pag L Jees

16



WHC

If the units used are common for the abscissa and the ordinate (i.e., inches to inches or
centimeters to centimeters), the paper will have a one-to-one relationship for establishing the
slope of the Weibull. (The Weibull parameter 8 is established by simply measuring the slope of
the line on Weibull paper.) Of course, the scales can be made in any relationship. That is 2-to-1,
10-to-1, 100-to-1, or any other combination to best depict the data. Throughout this handbook
data has been plotted on 1-to-1 paper wherever possible. However, the slopes will be displayed
on the charts., Sample Weibull paper has been included in Appendix L (At first glance, this
paper may appear to be common log or log-log paper. Looks are deceiving because it is not and
should not be used as such; nor can common log paper be used as Weibull paper.)

2.3 FAILURE DATA ANALYSIS — EXAMPLE

During the development, testing, and field operation of gas turbine engines, items _
sometimes fail. If the failure does not affect the performance of the aircraft, it will go unnoticed
until the engine is removed and inspected. This was the case for the compressor inlet airseal
rivets in the following example. The flare part of the rivet was found missing from one or more
of the rivets during inspection.

A program was put into operation to replace the rivets with rivets of a new design. A
fatigue comparison was to be used to verify the improvement in the new rivet. A baseline using
the old rivets was established by an accelerated laboratory test., The results are presented in
Table 2.3.

TABLE 2.3. BASELINE

Rivet Serial Failure Time

Number (S/IN) (min) Remarks

1 20 Failure

2 96 Failure

3 100 Rivet flare loosened without failure
4 30 Failure

5 49 Failura

[ 45 Rivet flare loosened without failure
7 10 Lug failed at rivet attachment

8 82 Failure

Since rivet numbers 3, 6, and 7 were considered nonrepresentative failures, these data will
be ignored for the first analysis. That leaves five data points. The first step in establishing a
Weibull plot is to order the data from low time to high time failure. This facilitates establishing
the plotting positions on the time axis. It is also needed to establish the corresponding ordinate
F(t) values. Bach failure in a group of tested units will have a certain percentage of the total
population failing before it. These true values are seldom known. Studies! have been made as to
how best to account for this inaccuracy, especially with small samples. However, most of these
studies are limited, and more detailed discussion is beyond the scope of this handbook. It has
been the convention at P&WA to use “Median Ranks” for establishing F(t) plotting positions,
and tables can be found in Appendix B.

With five failures, the column in Appendix B headed with sample size § is used. The
resulting coordinates for plotting the Weibull are shown in Table 2.4 and plotted in Figure 2.2.
One additional item should be noted. Points with the same time should be plotted at that time
at separate median rank values.

K apur and Lamberson, Reliability in Engineering Design, Wilay, pp 297-303.
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TABLE 2.4. WEIBULL COORDINATES

Failure
Order Time Median
Number S/N  (Min) Rank
1 4 30 12.9
2 5 49 313
3 8 82 50.0
4 1 90 68.6
5 2 96 87.0

A line is drawn through the data points. Formal methods of rank regression and maximum
likelihood for establishing the line are discussed in Appendices C and D respectively. The slope
of the line is measured by taking the ratio of rise over run, Select a starting point and measure
one inch in the horizontal direction (run). Then, measure vertically (rise), until the line is
intersected. In Figure 2.2, the rise is two inches. Therefore, the slope represented by Greek
symbol 8, (8) = rise/run = 2/1 = 2. One needs two parameters to describe a Weibull distribution
when discussing or reproducing the curve. The first is 8, and the other is the characteristic life
eta (denoted by #). Eta occurs at the 63.2 percentile of the distribution and is indicated on most
Weibull paper. In Figure 2.2, the 63.2 percentile crosses the line at 80 minutes; therefore, the
characteristic life 7 = 80 min.

The unique feature of the characteristic life is that it occurs at the 63.2% point regardless
of the Weibull distribution (i.e., slope). By examining the Weibull equation it wil! become clear
why this is true. When time, t, is equal to 7 it does not matter what g is; F(t) is always 63.2%:

F(t) =1 - ‘g_"--(tfu);i3
=1-¢ "M when t = ¢
=1 — 0.368
F{t) = (1.632 regardless of the value of 8

24 SUSPENDED TEST ITEMS — NONFAILURES

In the example in Section 2.3, some rivets failed by causes other than the failure mode of
interest. A rivet that failed by a different mode cannot be plotted on the same Weibull chart in
the same manner as a rivet which fractured because the rivets do not belong to the same failure
distribution. These data points are referred to as suspended or censored points. There are
several definitions® of suspensions, but for Weibull analysis, they are always treated the same
way. They cannot be ignored when establishing the Weibuli. The argument for including them
in the analysis is that if their failure had occurred in the same fashion as other failures, the rank
order of the other failures would have been influenced. Therefore, something needs to be done to
account for the potential influence of these points. To illustrate the adjustment of the rank
order numbers for the influence of these suspended items, the rivet test results will be used
again.

¥Mypel: Testterminated after a fixed time has elapsed.

Type II: Test terminated after a set number of failures have occurred.
Type HI: Test terminated for a cause other than the one of interest.
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The general formula for adjusting the rank position, considering all possible ways the
suspended item may have failed and potentially influenced the results, is given by the following
equation: Q

(N + 1) — (previous adjusted rank)

2 =
Rank Increment T + (number of items beyond present suspended item)

(2.2)

where N is the total number of rivets tested regardless of whether it failed, was suspended
(Type I or Type II), or suspended by the wrong failure mode (Type III). .

Applying this equation to the rivet test data, the values in Table 2.5 are obtained.

TABLE 2.5. ADJUSTED RANK

Rivet S/N Order Time (minutes) Adjusted Ronk

7 i 10 suspension —
4 2 30 failure 1125
6 3 45 suspension —
b 4 49 failure 2.438
B b 82 failure 3.751
1 6 80 failure 5.064
2 7 86 failure 6.377
3 8 100 suspension —

The adjusted ranks were calculated in the following manner:

« Rivet No. 7 is a suspension; therefore, it does not need a rank value because
it will not be plotted on the Weibull chart.

_B8+1)—0

Rank Increment for Rivet No. 4 = TF 7 = 1.125

where:
8 is the total number of rivets tested whether they failed or not
0 is the previous adjusted rank (in this case there was none)

7 is the total number of items beyond the first suspension starting the count
with the first failure as illustrated below:

Rivet Time Items Beyond Suspension

10 suspension

30 failure 1 Starting here and counting forward
45 suspension 2
49 failure 3
82 failure 4
90 failure 5
96 failure 6

100 suspension 7

O3B = 00 =]

2 Johnson, Leonard G. (1959). The Statistical Treatment of Fatigue Experiments. Research Laboratories, General

Motors Corporation, pp. 44-50. Q

20

Huye



The adjusted rank is the previous rank (in this case 0) plus the rank increment of 1.125.

Therefore, the adjusted rank is:

Adjusted Rank for Rivet No. 4 =0+ 1,125 =1.125

¢ Rivet No. 6 is a suspension and receives no rank value,

« Rivet No. 5 is a failure and the formula has to be employed again to identify
the new rank increment to use between failures.

(8 +1)—1.125

= 1.313

Rank Increment = 175

where

1.125 is the previous adjusted rank

5 is the number of items beyond the last suspension starting
with the failure following that suspension.

Rivet Time

10 suspension
40 failure
45 suspension
49 failure
82 failure
90 failure
96 failure
100 suspension

QO OOCT3 -]

Items Beyond Suspension

Starting here and counting forward

1
2
3
4
5

The adjusted rank, therefore, is the previous adjusted rank plus the new rank

increment.

Adjusted Rank No. 5 = 1.125 + 1.313 = 2.438

» Rivets No. 5, No. 8, No. 1 and 2 are failures without any additional
suspensions between them and the previous failures. Therefore, no new rank
increment needs to be calculated. The last value calculated (1.313) is still
valid. Therefore, the adjusted ranks for these rivets are:

»  Adjusted Rank No. 8 = 2.438 + 1.313 = 3.751
+  Adjusted Rank No. 1 = 3.751 + 1.313 = 5.064
=  Adjusted Rank No. 2 = 5.064 + 1.313 = 6.377.

Hur
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With these adjusted ranks, the median ranks can be established. The sample size to be
used when entering the median rank table would be 8. While interpolation could be used for
determi?ing the appropriate median rank, a good approximation is provided by Benard’s
formula® :

_ i—0J3 .
Py = NF04 X 100% (2.4)

where N = sample size
i = adjusted rank value

Use of this formula is illustrated in Table 2.6,

_ (L125 — 0.3) x 100%

. o
p,,, — {2438 - 2.36). 2100% _ g5 450,

etc.

TABLE 2.6. MEDIAN RANK

Adjusted Rank  Median

Order No. Rank
11256 9.82%
2.438 26.46%
3.751 41.08%
5.064 56.71%
6.377 12.35%

Using the calculated median ranks and the failure times, Figure 2.3 is derived. The slope of
the line, 8 = 2.0, is the same as the earlier Weibull. This will generally be true if the suspensions
are randomly dispersed with the data. Note, however, the effect on the characteristic life, . It
went from 80 minutes without suspensions to 100 minutes with suspensions. The analysis
resulting in 100 minutes is the correct method.

25 WEIBULL CURVE INTERPRETATION

Weibull curves may reveal clues about the failure mechanism, since different slopes imply
different failure mechanisms.

If the slope is less than 1.0, reliability increases as the unit ages, This is often referred to as
an infant mortality failure mode. Quality control and assembly problems may produce infant
mortality failures. For instance, some gas turbine failures having slopes less than 1.0 are:

Improper augmentor liner repair — quality

Improper installation of temperature probes — misassembly

Fuel pump leaks due to installation problems — misassembly
Overhaul-related failures of various components — quality/misassembly
Electronic control failures — quality.

oo o

! Kapur and Lamberson, (1977). Reliability in Engineering Design. John Wiley and Sons, Inc., pp. 300.
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The exponential distribution is a special case of the Weibull distribution when g = 1.0. The
exponential at times reflects original design deficiencies, insufficient redundancy, unexpected
failures due to ingestion, or even product misuse. This would result in a constant failure rate
condition. Some examples of Weibulls with slopes of 1 or near 1 are

Bearing cage failure
Temperature probe fatlure

Fuel control solenoid failure
Fuel oil cooler failure

Electronic engine control failure.

P oo

Slopes greater than 1 represent wearout modes. For shallow slopes like 1.8 to 3.0 there is
more scatter in the failure data and therefore failure predictions will cover long timespans
reflecting this uncertainty. As the slopes get steeper, failure times become more predictable.
Some examples of Weibulls with slopes greater than 1 are:

Turbine vane wearout
Augmentor liner burnthrough
Temperature probe: boss fatigue
Gearbox housing cracks
Augmentor flameholder cracks
Qil tube chafe through.

- -

A slope, 8, of 3.44 would approximate the familiar bell-shaped or normal curve, as
indicated in Figure 2.4,

2.6 DATA INCONSISTENCIES AND MULTIMODE FAILURES

There are other subtleties in Weibull analysis which might signal problems. Examples are
given that illustrate the following:

a.  Failures are mostly low-time parts

b. Serial numbers of failed parts are close together

¢. The data has a “dogleg” bend or cusp when plotted on Weibull paper .
d. The data has a gradual convex or concave bend on Weibull paper.

2.7 LOW-TIME FAILURES

Figure 2.5 is an example of low-time part failures on main oil pumps. Gas turbine engines
are tested before being shipped to the customer, and since there were over 1000 of these engines
in the field with no problems, what was going wrong? Upon examining the failed oil pumps it
was found that they contained oversized parts. Something had changed in the manufacturing
process which created this problem. The oversized parts caused an interference with the gears in
the pump which resulted in failure. This was traced to a machining operation and corrected.

The point here is that low-time failures often indicate wearout (abnormal in this case) by
having a slope greater than one when plotted. Low-time failures provide a clue to a production
or assembly process change, especially when there are many successful high-time units in the
field.
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2.8 CLOSE SERIAL NUMBERS

The same reasoning can be extended to other peculiar failure groupings. For example, if
failures oceur in the middle of the time experience, that is, low-time units have no failures, mid-
time units have failures, and high-time units have no failures, then a batch problem is
suspected. Something may have changed in the manufacturing process for a short period of time
and then changed back. The closeness of the serial numbers of the parts are a very definite clue
to this type of problem.

Figure 2.6 is a prime example of a process change which happened midstream in
production. Bearings were failing in the augmentor pump. The failures had occurred in the 200
to 400 hour time frame, At least 650 units had more time than the highest time failure. These
failures were traced to a process change that was incorporated as a cost reduction for
manufacturing the bearing cages.

2.9 DOGLEG BEND

A Weibull plot containing a “dogleg bend” is a clue to the potential of multiple failure
modes (see Figure 2.7). This was the case for a compressor start bleed system binding problem.
Upon examination of the data, 10 out of 19 failures had occurred at one base. It was concluded
that this base’s location was contributing to the problem, The base was located on the ocean and
the salt air was the contributing factor.

The data were broken apart and the two resultant Weibull charts are presented in Figures
2.8 and 2.9, Note that the fleet Weibull presented in Figure 2.8 is less than one, 8 = 0.837. This
could be considered an infant mortality problem, while the ocean base Weibull, Figure 2.9, is
more of a wearout failure mechanism with 8 = 5.223. This problem was related to lack of
maintenance. More attention was given to this area and the problem was resolved.

The failures do not have to be associated with an environmental factor to cause a dogleg
Weibull. In fact, they are usually associated with more than one failure mode, For instance, fuel
pump failures could be due to bearings, housing cracks, leaks, etc. If these different failure
modes are plotted on one Weibull plot, several dogleg bends will result. In cases where this
occurs without prior knowledge, a close examination of the failures will have to take place for
potential separation into different failure modes.
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2,10 CURVED WEIBULLS

In Section 2.1, the cumulative distribution function F(t) is presented for the Weibull. It Q
was illustrated as:

F(t) =1 - e_“"‘lu”n)"

where:

t = failure time
t, = starting point or origin of the distribution.

In discussions so far, t, was assumed to be zero. When data are plotted on Weibull paper it
quickly becomes obvious if the origin of time is not zero. The data will appear curved as
illustrated in Figure 2.10 if the zero time origin is not true.

There are other reasons for poor fit (i.e., the data do not form a straight line on Weibull
paper). For example, another distribution like a Normal, log Normal, ete. may better describe
the data. If this is true, the distribution which best describes the data should be used.

But the data displayed in Figure 2.10 was from engine controls and there was no reason to
suspect that the Weibull distribution could not be used to analyze it. There are a couple of ways
to determine what adjustment is needed to make the data appear straight. First, there is an
analytical method that can be used to establish t . The equation is:

B (s — t) (5 — t)
L i A ) e (=)

Where t, is the first failure time, t, is the time corresponding to the linear halfway distance
on the vertical axis between the first and last failure, and tg is the last failure time, This is
illustrated in Figure 2.11. The values for t;, t,, and t; are:

t;= 16.9 hours ~ first failure
to= 42.0 hours ~ halfway failure

ty= 389.0 hours ~ last failure

¢ — 400 — (389.0 — 42.0) (42.0 — 16.9)
o = 420 = 1389.0 — 42.0M42.0 — 16.9)

t,= 42.0-27.1

L+]

t_ = 14.9 hours.

(]

If t, is positive, it implies that the origin starts after zero; if negative, before zero. In other
words, there is a time, in this case approximately 15.0 hours, in which the control would not be
expected to fail.
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Upon questioning the vendor, this was not found to be true. The vendor was actually
testing the units for about 15 hours prior to shipment and discarding or repairing failed units.
This made the distribution appear to be truncated at 15 hours with a zero probability of failure
before that time. Subtracting 15 hours from each of the failure times will adjust the curve for the
absence of this time. The resultant curve is plotted in Figure 2.12.

The corrected curve provides a more accurate prediction of the probability of failure,
However, to determine distribution percentiles like the B.1 life or B1 life, one has to add the 15
hours to the time read from the Weibull plot.

For example, to determine the time to failure for the 1/100 unit (often referred to as the Bl
life), one would read the 1 percentage point of 8 hours from Figure 2.12 and then add 15 hours to
it. That is, the B1 life is estimated to be 23 hours.

The second way to correct a curved Weibull uses a simplistic approach. When the curved
Weibull becomes fairly perpendicular to the horizontal scale, extend the curved Weibull
vertically through the time scale. Where it intersects, simply read the curve and subtract or add
the time. Trying this technique on Figure 2.11 confirms that 15 hours is a good estimate, By eye,
this curve would be considered conves; therefore, a subtraction of time would be required. Data
plotted on Weibull paper that curves in the other direction (concave) would require adding time
to each point. The amount of time to be added would be found with either of the above
procedures.

2.11 PROBLEMS
Problem 2-1:

Fatigue specimens were put on test. They were all tested to failure and the failure times were
150, 85, 250, 240, 135, 200, 240, 150, 200, and 190 hours.

a. Construct a Weibull and determine its slope, 8, and characteristic life, 5.

b. Would you have expected the derived slope for fatigue specimens?
c. If you were quoting the B, 4life, what would the value be?

35




y WEIBULL DISTRIBUTION

B =0.970

v = 944,867
= SAMPLE SIZE = 261
%0 EAILURES = 71

. -(|To CORRECTION = 15.00
20 L~ =
i)
e e ot et o B o T T N 0 L L
50 l/'
A0 ‘/
7

2. A
20.

3
v

A
oo
N

CUMULATIVE PERCENT OCCURRED

RAN

0.1

1. 2. 3. 4. 5. 65.7.8.9.10 24 3. 4. 5. 6.7.8.8.100 2. 3, 4. 5. 6.7.8.9,0000.

TOTAL OPERATING TIME-(HR)

= FD271853

Figure 2.12. t, Correction Applied

36

HUe



Problem 2-2:

There were five failures of a part in service. The information on these parts is

é Serial Number Time (hours) Comment
831 9.0 Failure
832 6.0 Failure
333 14.6 Suspension
834 11 Failure
835 20.0 Failure
836 7.0 Suspension
837 65.0 Failure
838 8.0 Suspension

a, Construct a Weibull with suspensions included and determine its slope, 3,
and characteristic life, 5.

b. What is the failure mode?
c.  Are there other clues which may lead to an answer to the problem?
Problem 2-3:

The following set of failure points will result in a curved Weibull: 90, 130, 165, 220, 275,
370, 525, and 1200 hours.

a.  What value is needed to straighten the Weibull?
6 b. Will the value found in “a” be added or subtracted from the failure values?

Solutions to these problems are in Appendix 4.
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CHAPTER 3

WEIBULL RISK AND FORECAST ANALYSIS

3.t FOREWORD

One of the major uses of Weibull analysis is to predict the number of occurrences of a
failure mode as a funetion of time. This projection is important because it gives management a
clear view of the potential magnitude of a problem. In addition, if this prediction is made for
different failure modes, management is able to set the priority for the solution of each problem.

In this chapter the use of the Weibull probability distribution function in predicting the
occurrences of a failure mode is explained. The additional input needed for risk analysis will be
covered, and several examples are presented to explain further the techniques involved.

It should be emp};asized that the forecast analysis is only as good as the failure data. The
data should be examined closely to ensure that they are from a single failure mode and will fit a
Weibull distribution,
3.2 RISK ANALYSIS DEFINITION

A risk analysis calculates the number of incidents projected to occur over some future
period.

3.3 FORECASTING TECHNIQUES

‘The observed failures and the population of units that have not failed are used to obtain
the Weibull failure distribution, as discussed in Chapter 2. The following additional input is
needed for forecasting: :

a) Usage rate per unit per month {(or year, day, ete.)

b) Introduction rate of new units (if they are subject to this same failure
mode)

With this information a risk analysis can be produced. The techniques used to produce the
risk analysis can vary from simple calculations to those involving Monte Carlo simulation.
Monte Carlo simulation is only required when complications arise in the risk analysis. These will
be explained in the following sections.

3.4 CALCULATING RISK

Risk calculations are described in three sections:
¢ Present risk
+ Future risk when failed units are not fixed
+ Future risk when failed units are fixed.

3.5 PRESENT RISK

The simplest case arises when there are no new units (no production) and no replacement
of failed units. If there is a population of N items and each has accumulated t hours or cycles,
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the e.xp-ected number of failures from this population is the probability of failure by time
multiplied by the number of units, N. Therefore, for a Weibull distribution this becomes

Expected number of faiﬂlures = F{t)- N
= (l_e-ttlu) IN. (3.1)

Equation 3.1 can be used immediately to calculate the following:

There are 25 units in a population: 5 units have accumulated 1000 hours of operational
time, 5 units have accumulated 2000 hours, 5 units have accumulated 3000 hours, 5 units have
accumulated 4000 hours, and 5 units have accumulated 5000 hours. Assume that the population
is subject to a Weibull failure mode with 8 = 3.0 and » = 10000 hours. The question is, “What is
the cumulative expected number of failures from time 0 to now for this population?” Figure 3.1
is the Weibull failure distribution with the cumulative probability of failure by each time on the
units as illustrated. Table 3.1 summarizes the calculations involved.

TABLE 3.1. PRESENT RISK

Number(N) Time (t)
of on Each
Units Unit F(t) Ft}-N Example of Caleulation:
F(t) =1—g —(tin® g
5 1000 0.001 0.005 F(1000) = 1— o ~(1000/10000)
5 2000 0.008 0.040 = 1— g ~(O1)
5 3000 0.027 0.136 = 1— g "000
5 4000 0.062 0.310 = 1— 0,999
B 5000 0117 0.685 F(1000) = 0.001

Sum = 1.075

The value of F(t) can also be read directly from the Weibull Cumulative Probability Plot.
(See Figure 3.1.)

The cumulative expected number of failures in this case is 1.075.
36 FUTURE RISK WHEN FAILED UNITS ARE NOT FIXED

Given the same 25 units as in Table 3.1, the expected number of failures over the next 12
months can be calculated. Assume that one of the 4000 hour units has just failed. Since it is
assumed that failed units will not be replaced, it will be omitted from the population for the

calculation of future risk.

Yearly usage of each unit will be 300 hours. The future risk will be composed of the risk of
the 1000-hour units failing by 1300 hours, plus the risk of the 2000 hour units failing by 2300

hours, plus the risk of the 3000 hour units failing by 3300 hours, etc.

In general, if a unit has accumulated t hours to date without failure, and will accumulate u
additional hours in a future period, then that unit’s contribution to the total future risk is:

F(t+u) — F(t)
T I -F@® (3.2)
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where F(t)=1—e""/”)ﬁis the probability of the unit failing in the first t hours of service, assumin-g
it follows a Weibull failure distribution. If F(t) is much less than 1.0, equation (3.2) is
approximately equal to

F(t+u) — F(t) (3.3)

Table 3.2 summarizes the future risk calculations for the population of 25 units, with one failed
unit at 4000 hours.

Hence the expected number of failures from this population over the next 12 months is:
Failures = 5(0.0012) + 5(0.0041) -+ 5(0.0089) + 4(0.0154} + 5(0.0238) = 0.2506
3.7 FUTURE RISK WHEN FAILED UNITS ARE REPAIRED

The calculation of the number of failures that will occur over some future time interval
when the failed units will be repaired and returned to service involves the same concepts as
when units are not fixed. When the probability of failure of a unit over the time interval in
question is small (on the order of 0.5 or less), the techniques of Paragraph 3.6 can be applied. In
cases where the probability of failure is greater than about 0.5, the chance of more than one
failure over the same time interval becomes significant. Then, the expected number of failures
may be caleulated using published tables!, complex mathematical formulas, or Monte Carlo
simulation methods.

3.8 THE USE OF SIMULATION IN RISK ANALYSIS

The calculation of risk is easy for the simple case of a population with no inspections, no
production added, and no retrofits, Of course, even simple risk analysis can become complicated
by the volume of calculations involved, In this case, a computer program automating the
calculations is useful.

In some instances, a part's service life will depend on decisions to be made in the future
which will be dependent on a Weibull distribution. Since only the probebility of this outcome
may be known, a powerful tool known as Monte Carlo simulation is useful. Monte Carlo
simulation enables an analyst to build a computer model of the decision plan as it affects a
part’s service life. It may include scheduled part inspections, random events such as the
extensive wear of a particular part and its replacement, as well as the addition of new units into
the field.

The effect of scheduled inspection on risk is straightforward. If a part is inspected and
removed from service, it no longer contributes to the fleet’s risk. If it continues in service, it
continues to contribute to the fleet’s future risk.

As an example, the methodology used in a Monte Carlo simulation is described for the case
of three failure modes and a scheduled inspection. In this case, the number of failures occurring
in each mode before the scheduled inspection is desired. However, the occurrence of any one
failure mode will not affect any other mode.

1 WHITE, J. S. (1964), “Weibull Renewal Analysis,” in Proceedings of the Aerospace Reliability and Mainteinability

Conference, Washington, D, C., 29 June — 1 July 1964, New York: Society of Automotive Engineers, 639-657.
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TABLE 3.2. FUTURE RISK

Current Time on
Number Time Each Each Unit's
of on Each Unit Risk
Units Unit at Years End F(t+u)-F(t)
(N) {t) (hr) {t+u} (hr) Fi+u) Ft) 1-F7t)
5 1000 1300 0.0022 0.0010 0.0012
] 2000 2300 0.0121 0.0080 0.0041
5 3000 3300 0.0353 0.0266 0.0089
4 4000 4300 0.0764 0.0620 0.0154
5 5000 5300 0.1383 0.1175 0.0236

The following procedure is performed for each unit in the population. Using random
numbers that are evenly (uniformly) distributed between 0 and 1 and the three Weibull failure
distributions, generate a time-to-failure for each failure mode, See Figure 3.2, The following
equation is used to calculate the time to failure:

time to failure = 3 [ Rn( T = rand];:m P T )]m (3.4)

Scheduled
Inspection

| | | A |
! ' Y : Y

Mode 2 Mode 1 Mode 3
Time to Failure Time to Fallure Time to Failure
FD 259848

Figure 3.2. Simulation Logic — First Pass

Advance the simulator to the first event; if this event is a failure, note the cause, and
regenerate a new time to failure for this mode. See Figure 3.3.

Scheduled
Inspection

| | | A |
! ] Iy Y

Mode 1 Mode 2 Mode 3
e ) Time to Failure Time to  Time to
Failure Fallure

o

FD 259949

Figure 3.3. Simulation Logic — Second Pass

42

1426C




M2

Contin.ue this process until the scheduled inspection is reached. The number of failures of
each mode is recorded and the simulation is repeated. After many repetitions of this process,
each using a different set of random numbers, the results are averaged to give the expected risk.

A more detailed example utilizing these principles is given in Section 3.12.

3.9 CASE STUDIES

Several case studies in the use of the ideas developed in the previous sections are now
presented. The first two examples, Sections 3.10 and 3.11, illustrate the direct calculation of risk
without simulation. The case study in Section 3.12 uses Monte Carlo simulation.

3.10 CASE STUDY 1: BEARING CAGE FRACTURE

Bearing cage fracture times of 230, 334, 423, 990, 1009, and 1510 hours were observed. The
population of bearings within which the failures occurred is shown in Figure 3.4, A Weibull
analysis similar to those described in Chapter 2 was followed to obtain the Weibull failure
distribution for bearing cage fracture (Figure 8.5). From this distribution plot we can see that
the By, life (time at which 10% of the population will have failed) is approximately 2430 hours.
This was much less than-the B,; design life of 8000 hours, so a redesign was undertaken
immediately. Additionally, management wanted to know how many failures would be observed
before this redesign entered the field.

The risk questions and solutions are:

1. How many failures could be expected by the time units had reached 1000
: hours?

Calculate the number of units that will fail by 1000 hours, assuming failed
units are not replaced, Enter the x-axis of the Weibull plot (Figure 3.5) and
read at 1000 hours that approximately 1.3% of the population is expected
to fail. That is, after the entire population of 1703 bearings reach 1000
hours each, 1703 (0.013) = 22 bearings would be expected to have failed.

2. How many failures could be expected in the next year?

Utilizing the methodology explained in Section 3.6 and applying Equation
3.2 with a monthly utilization of 25 hours or 12{25) = 300 hours in one year
results in the calculations shown in Table 3.3. Thus about 12 more failures
can he expected in the next 12 months.

3. How many failures could be expected when 4000 hours had been
accumulated on each bearing if we instituted a 1000 hour inspection? A
2000 hour inspection? No inspection?

From the answer to Question 1, the probability of a bearing failure by 1000
hours is 0.013. Therefore, if it is assumed that each 1000 hour inspection
makes the bearing “good as new” relative to cage fracture, there is a total
expectation of failure for each bearing by 4000 hours of approximately
0.013 + 0.013 + 0.013 + 0.013 = 0.052. So, if all 1703 bearings ran to 4000
hours with 1000 hour inspections, 0.052(1703)= 89 failures can be
expected,
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On the other hand, if there is a 2000 hour inspection, the probability of
failure by 2000 hours is 0.065. Using the same approach as in the previous
paragraph, by 4000 hours about 0.065 + .065 = 0.13 failures would be
expected for each bearing. Therefore, the expected number of failures with
a 2000 hour inspection would be 0.13(1703)=221,

Now suppose no inspections were made until 4000 hours, at which time the
bearing will be retired. Again utilizing the Weibull in Figure 3.5, the
probability of failure by 4000 hours is 0.28. Therefore, by the time all 1703
of the bearings have been retired, 0.28(1703)=477 will have failed.

3,11 CASE STUDY 2: BLEED SYSTEM FAILURES

Nineteen bleed system failures have been noted and the times and geographical locations
of these failures are listed in Table 3.4. The high incidence at air base DD prompted a risk
analysis to determine the cumulative number of incidents to be expected over the next year at
air base D.

A Weibull analysis of the fleet failures excluding air base D (Figure 3.6), indicates a
decreasing failure rate phenomenon, that is, 8 <1.0. But a Weibull analysis of the failures at air
base D (Figure 3.7) indicates a rapid wearout characteristic. From comparison of the plots it
seems that the bases are significantly different. It is shown in Chapter 7 that the two failure
distributions may be proven statistically to be significantly different,

Since the probability of failure, excluding air base D, was quite low by 4000 hours (the life
limit of the part) for the fleet, a risk analysis for air base D only was requested.

The risk questions are:

1)  What is the expected number of incidents in the next year and a half with
a usage of 25 hours per month?

Using the histogram of the times on each bleed system at air base D
(Figure 3.8), set up the calculation as before (Table 3.5). Over the next
18 months, 56 failures can be expected using a 25 hours per month
utilization rate,

2}  If the usage drops to 20 hours per month immediately, how many fewer
failures can be expected?

Changing the utilization rate to 20 hours per month will change the
calculation of expected risk. The new risk over the next 18 months is given
in Table 3.6. About 42 failures, or about 13 fewer than for a utilization rate
of 25 hours per month, are predicted.
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TABLE 3.3. BEARING RISK AFTER 12 MONTHS

Nu}iber Current Time on Each Unit's
of Time on Each Unit Risk Total Risk
Units Each Unit at Year's End Fli+u)-F(t) F{t+u)-F(t) N
_ @™ ® ft+u) Fit) Fit+u) R & i () I

288 50 350 0.0000 0.0012 0.0012 0.3480
148 150 460 0.0002 0.0022 0.0020 0.2063
- 125 250 5151) 0.0006 0.0084 0.0029 0.3607
112 350 650 0.0012 0.0051 0.0038 0.4301
107 450 750 0.0022 0.0070 0.0049 0.5193
59 650 850 0.0034 0.0093 0.0059 0.5869
110 650 950 0.0051 0.0121 0.0070 0.7731
114 760 1050 0.0070 0.0151 0.0082 0.9326
119 850 1150 0.0093 0.0186 0.0094 1.1148
128 950 1250 0.0121 0.0225 0.0106 1.3568
124 1050 1350 0.0151 0.0268 0.0118 1.4691
a3 1150 1460 0.0186 0.0315 0.0131 1.2214
47 1250 1550 0.0225 0.0366 0.0144 . 06730
41 1350 1650 0.0268 0.0422 0.0158 0.6473
27 . 1450 1750 0.0315 0.0481 0.0172 0.4631
12 1550 1850 0.0366 0.0645 0.0185 0.2225

6 1650 1950 0.0422 0.06813 0.0200 0.1197

0 1750 2060 0.0481 0.0685 0.0214 0.000

1 1850 2160 0.0545 0.0761 0.0228 0.0228

0 1950 2260 0.0613 0.0841 0.0243 0.0000

2 2050 2350 0.0685 0.0925 0.0258 0.0616

_Sum = 11.613

TABLE 34. BLEED SYSTEM
FAILURES BY

ATR BASE

Hours at Failure

&
"HEHooooogobbarUsams ?
n

153
872
1568
212
1198
884
1428
£08
1261
1249
14056
708
1082
884
1105
828
1013
64
32
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Figure 3.6. Bleed System Failure Distribution Excluding Air Base D
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TABLE 3.5. BLEED SYSTEM RISK AFTER 18 MONTHS

{Utilization Rate = 25 Hours Per Month)

Number Current Time on Each Unit's
of Time on Each Unit Risk Total Risk
Units Each Unit in 18 Months Ft+u)-F(t) Ft+u)-F(t) N
(N) {t) (t+u) F(t) Ft+u) FA0] TFE)
0 &0 500 0.0000 0.0007 0.0007 0.0000
0 150 600 0.0000 0.0018 0.0018 0.0000
2 250 700 0.0000 0.0041 0.0041 0.0081
0 360 800 0.0001 0.0082 0.0081 0.0000
0 450 900 0.0004 0.0151 0.014% 0.0000
2 850 1000 0.0012 0.0260 0.0249 0.0497
2 650 1100 0.0028 0.0424 0.0397 0.0794
10 760 1200 0.0058 0.0669 0.0606 0.,6046
28 850 1300 0.0112 0.0984 0.0882 22039
27 950 1400 0.0199 0.1415 0.1241 8.3500
22 1050 1600 0.0334 0.1965 0.1688 3.7130
24 1150 1600 0.0532 0.2640 0.2227 5.3445
24 1250 1700 0.0810 0.3434 0.2856 6.8540
11 1350 1800 0.1186 0.4328 0.3565 3.9218
11 1460 1900 0.1676 0.6286 0.4338 47719
20 1550 2000 0.2287 0.6259 0.5149 10.29%0
8 1650 2100 0.3023 0.7188 0.5969 4.7752
4 1750 2200 0.3871 0.8016 0.6763 2.7052
2 1860 2300 0.4802 0.8700 0.7499 1.4998
3 1950 2400 0.6774 0.9218 0.8148 24448
3 2060 2500 0.6732 0.9573 0.8693 2.6080
1 2160 2600 0.7618 0.9792 0.9125 0.9125
Sum = 56.2352
114
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TABLE 3.6. BLEED SYSTEM RISK AFTER 18 MONTHS

(Utilization Rate = 20 Hours Per Month)

Number Current Time on Each Unit'’s
of Time on Each Unit Risk Total Risk
Units Each Unit in 18 Months F(t+u)-Ft) F(t+u)-F(t) N
(N) t) {t+u) F(t) Ft+u) 1-F(t) 1-F(t)
0 a0 410 0.0000 0.0002 0.0002 0.0000
0 150 510 0.0000 0.0008 0.0008 0.0000
2 250 610 0.0000 0.0020 0.0020 0.0039
0 350 710 0.0001 0.0044 0.0043 0.0000
0 450 810 0.0004 0.0087 0.0083 0.0000
2 550 910 0.0012 0.0160 0.0148 0.0296
2 650 1010 0.0028 0.0273 0.0246 0.0493
10 750 1110 0.0058 0.0444 0.0388 0.3877
26 850 1210 0.0112 0.0688 0.0582 1.5136
27 950 1310 0.0199 0.1022 0.0840 2.2678
22 1050 1410 0.0334 0.1465 0.1170 2.5739
24 1150 1510 0.0532 0.2027 0.1580 3.7909
24 1250 1610 0.0810 0.2714 0.2072 49738
i1 1350 1710 0.1186 0,3520 0.2648 29127
11 1450 1810 0.1676 0.4422 0.3300 3.6206
20 1550 1910 0.2287 05384 0.4015 8.0301
8 1650 2010 0.3023 0.6355 0.4775 3.8201
4 1760 2110 0.3871 0.7276 0.5556 2.2222
2 1850 2210 0.4802 0.8091 0.6328 1.2658
3 1950 2310 0.5774 0.8759 0.7064 2.1192
3 2050 2410 0.6732 0.9260 0.7736 2.3208
1 2150 2510 0.7618 0.9600 0.8323 0.8323
Sum = 42,7432
3.12 CASE STUDY 3: SYSTEM RISK ANALYSIS UTILIZING A SIMULATION MODEL Q

Assume a jet engine has four independent failure modes:

» Overtemperature
» Vane and Case cracking

» 0il Tube cracking
Combustion chamber cracking.

The failure distribution of each of these modes is illustrated in Figure 8.9. In addition,
there is a scheduled inspection at 1000 hours. At failure or scheduled inspection the modes are
made “good-as-new.”

1) How many failures can be expected in each mode over the next 2 years?
(Assuming a usage rate of 25 hours/month)

2) How will lengthening the inspection interval to 1200 hours change this
risk?
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There is no easy solution to this problem without simulation. A Monte Carlo simulation
based on these groundrules is illustrated in Figure 3.10.

To provide more detail, one engine starting with 0 hours, will be followed step by step to
the first scheduled inspection at 1000 hours.

Step 1
Generate random times to failure for each failure mode. First, using a table of random
numbers, (Reference 1), four random numbers converted to the 0 to 1 range are 0.007, 0.028,

0.517, and 0.603.

Using Equation 3.4

10,103 [on (+=2557) ]2
951 hours

F; = Overtemperature

Il

2,336 [2n (=) I
1,072 hours

F, = Vane and case cracking

12,050 [20 (=g ) 1o
= 10,180 hours

Fy = Oil tube cracking

3,149 [Qn (m) ]1;'4.03
3,088 hours

. F,= Combustion chamber eracking

Steps 2 & 3

The minimum of the times-to-failure and inspection time is 951 hours; therefore, the
scheduled inspection was not reached.

Step 4

This failure was an overtemperature (F;) and is recorded as occurring 951/(25 hours usage)
= 38 months in the future.

Generate another time to failure for Fy, using the next random number, 0.442,

New F, = 10,108 [on (—75) 12" = 7,876 hours

+ 951hours on F failure
8,827 hours

Ref. 1, A Million Random Digits With 100,000 Normal Deviates, The Free Press, Rand Corporation, 1955.
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Now, the minimum of (F,, Fy, Fy, F,, 1000 hours) is 1000 hours, which is the scheduled
inspection. This process can be continued for as many inspection intervals as desired.

For engines with greater than zero hours initially, the Monte Carlo process must be
modified. First, the time since last 1000-hour inspection is calculated and used as the engine’s
initial age (since engines are made *good as new" at each 1000-hour inspection). Then, note that
the first set of four random failure times must be greater than the engine’s initial age (since all
of the engines in the histogram are suspensions). If any are less, other random numbers are
drawn until all four failure times are greater than the initial age.

The above procedure is followed for each engine in the population (Figure 3.11) and is
repeated several times so that an average risk can be calculated.

The simulation in Figure 3.10 was run, and the risk for the first 24 months is presented in
Table 3.7 for the 1000 hour inspection, and in Table 3.8 for the 1200 hour inspection. A plot
comparing the two risks is presented in Figure 3.12. Increasing the inspection interval to 1200
hours increases the expected number of failures from 25 to 34, a delta of 9, by the end of 1981.
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TABLE 3.7. SIMULATION OUTPUT FOR 1000 HOUR INSPECTION

Cumulative Incidents

Month EFH* Cum EFH* Oil Tube Vane Case QOver/Temp Comb. Chamber Q

k & » % & & & & 1980 " &2 N & X 8
Jan 29,225 28,225 0.00 0.00 0.00 0.00
Feb 29,225 58,450 0.17 0.33 0.21 0.17
Mar 29,225 87,675 0.38 0.67 047 0.34
Apr 298,225 116,200 0.60 115 0.74 0.68
May 20,225 146,125 0.78 147 0.95 0.74
Jun 29,225 175,360 0.92 1.71 1.13 0,87
Jul 29,225 204,575 1.22 2.27 1.49 116
Aug 29,225 233,800 1.48 2.81 177 141
Sep 29,225 263,025 1.66 3.16 2.02 1.60
Qct 29,225 293,250 N 1.85 3.80 2.36 1.95
Nov 29,225 3214 2.07 4.03 2.51 2.03
Dec 29,225 ~ §60,699 2.38 4.90 2.87 2.46

*» X % & K ¥ RN 1981 *E ¥ B & XD
dan 29,225 379,924 2.66 5.55 3.19 2.77
Feb 29,225 409,149 277 5.83 3.32 2.91
Mar 29,295 488,374 2,87 6.13 344 3.05
Apr 29,225 467,599 3.07 6.68 3.67 331
May 29,295 496,824 3.28 733 3.91 3.62
Jun 29,225 526,049 .37 7.48 4.02 3.69
Jul 29,225 566,274 . 3.64 8.26 4.33 4.06
Aug 29,225 584,499 3.70 845 4.40 4.15
Sep 29,225 613,724 3.76 8.59 447 4.21
Cet 29,225 642,949 3.80 8.59 447 4.21
Nov 29,225 672,174 416 9.40 495 4.62
Dee 29,225 701,389 4.44 9,96 5.29 490

*EFH = engine flight hours

e
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TABLE 3.8. SIMULATION QUTPUT FOR 1200 HOUR INSPECTION

Cumulative Incidents

é Month EFH* Cum EFH* Oil Tube Vane Case Qver/Temp Comb. Chamber
E R B BN BE BN B B ) 1980 L B B B BN BE B BN
Jan 29,226 29,225 .00 0.00 0.00 0.00
Feb 29,295 68,450 017 0.53 0.21 0.24
Mar 29,225 87,675 0.40 128 047 0.58
Apr 29,225 116,900 0.69 244 0.79 1.08
May 29,225 146,125 091 321 1.06 143
Jun 29,225 175,360 121 4,02 1.40 1.81
Jul 29,225 204,575 1.40 4.86 1.682 2,17
Aug 29,225 233,800 1.67 5.26 1.82 2.36
Sep 29,226 263,025 184 6.26 213 281
Oct 29,225 292,250 193 6.64 243 298
Nov 29,225 321,474 212 7.39 2,65 3.31
Dec 29,225 360,699 2.35 8.25 3.08 3.69
LI B B B B B N 1981 * 8 & b e b
Jan 29,225 379,924 2,61 9.26 321 414
Feb 28,225 409,149 272 9.73 334 4,34
Mar 29,225 438,374 301 10,99 346 4.89
Apr 29,225 467,599 331 12.18 3.79 540
May 29,225 496,824 8.81 12,16 393 5.40
Jun 29,225 626,049 365 13,72 4.04 6.07
Jul 29,226 566,274 3.65 13.72 4,35 6.07
Aug 29,225 584,499 3.93 1492 442 6.68
Sep 29,225 613,724 3,96 14.92 4.59 6.58
Oct 29,225 642,949 4.01 15.16 464 6.68
Nov. 29,226 672,174 4.16 165.77 4.99 6.94
Dec 29,225 701,399 446 16.47 5,32 6.94

é *EFH = engine flight hours
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3.13 PROBLEMS

Problem 3-1

A fieet of 100 engines is subjected to a Weibull failure mode. The Weibull has a slope of 3
and a characteristic life of 1000 hours. The current engine times are as follows:

Number of
Engines Engine Time
20 150 hrs
20 200
20 250
20 300
20 350

A.) What is the expected number of failures now? B.) How many additional
engines will be expected to fail in 6 months if the utilization rate is
25 hr/mo? Asgume that failed units are not fixed.

Problem 3-2

A turbine airfoil has caused unscheduled engine removals at the following times and

locations,

Time at
Failure

684
821
812
701
770
845
855
850
806
756
755
741
681
667
649
603
800
598
576
504
476

(hours)

Location

IHUQOWWOEQENOEQE > &> bbb

A) Generate a Weibull using the attached populations, overall (Figure 3.13)
and at Location A (Figure 3.14). How do these Weibulls compare?

HIRC
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B) How many failures can be expected in the next 12 months?, the next 24
months? from each population? (Use 30 hours/mo.)

Problem 3-3

Given a control failure mode with 8 = 1.26 and 5 = 19,735 total operating hours, and the
population of nonfailed units Figure 3.15, A) how many failures can be expected by the time
each unit has reached 1000 hours? B) 2000 hours? C) If the life of a control is 4000 hours, what is
the projected total number of failures in the life of the control if no further controls are added to
the population? D) If inspections *‘zero-time,” or make the control units “good-as-new’ how
many failures are projected to occur in this population by 4000 hours with a 1000 hour
inspection? K} with a 2000 hour inspection?

Problem 3-4

Using the table of 0-1 random numbers in Table 3.2, and the three Weibull failure modes:

a. g = 076
7 = 96,587 hours
b 8 = 2,638
n = 4996. hours
c g =174
n = 1126. hours
Assume two scheduled inspections, at 1000 hours and 2000 hours, that make modes a and ¢
“good-as-new,” while not helping mode b. A usage rate of 25 hours per month is assumed., Q

The following population of 5 engines is at risk:
1 engine at 100 hours, 1 engine at 200 hours, 1 engine at 500 hours,
1 engine at 700 hours, and 1 engine at 900 hours.
A} How many failures will occur over the next 48 months?
Use the Monte Carlo simulation technique to solve this problem.
B) Would it be advisable to drop the 1000 hour inspection?

Solutions to these problems are in Appendix J.

62

HRC




uoppndod j1o4aaQ “gI'g 24ndiy

8922t 110828 BE6OVSTAY

SINOH
00,2 00¥Z2 00LZ 0081 00SL 0021 006 009 O00€ 0
ofog oolo 0
I
c
5 ¢
14
ol |9 9 9 14
A Z z 2 L L
g8 8 8 g  S90USLIN0
66 & o 10 Jus0iad
— 8
148
qGl = ozis ajdwes -0t
—7l

© @

63




uoyomndog v uonwIOT pre 04ndig

g9221 21£028 660PSTAY w\—:O—I—
00/¢ 00¥2Z 00lc O008F 005k 002 006 009 O00¢€ 0
olo o olo o o ool Toool?
— ¢
T Lol ] —1v
S20UsLINO00
1O JUs2I8d
—9
2 2 32 2 2ezzeae —18
gz = ozis sjdwesg




uoyondod joLu0y ‘GI'g anfuy

g9z¢t 10828 O0LPSEAY

SINOH
0081 0061 00cl 006 009 00¢ oo
_ c L L £ 3
L9y
ﬂﬂﬂ
| e
LEzg |
[__19¢E
T2 = = —
e |_g & S99U81IND20
L Fs | | Bq Ed L [es L4 JO 1u89Jad
ag [ss mmmu%
wm Wm.mmmmmm
iy 4o
80¢1L - 9zIs o|dwes
-8

65



99

£0L0
8890
c0S°0
058°0
G010
aL¥'o
Q080
%100
¥L6'0
4980
T9L°0
860
1S5°0
LYo
1’0
86170
1180
LLTO
¥eL'0
FeI'0

BER'O
6¥E'0
P00
P80
128°0
198°0
oreE0
EL9°0
129°0
£ze'0
2990
8160
5020
SLLO
LYL0
8620
1180
EF9°0
L3280
SB00

809°0
928'0
6¥2'0
GE9°0
L6¥'0
¥¥9°0
9890
8800
089°0
£E6°0
669'0
AN
6¥9°0
160
B¥6'0
FAA
95450
£0%°0
£08'0
Fe90

§29°0
L0%0
0gr'o
568°0
Q60
£68°0
L8%0
8910
FLS'0
age’0
6880
LLZ'0
8390
BSY'0
8E9°0
820
¥ee'0
689°0
965°0
¥6¥0

888°0
198°0
¥50°0
699°0
0090
BOV0
08%°0
606°0
8980
%860
0600
8620
9180
L90
59270
LB60
1280
gL9'0
029'0
g¥8'0

7E60
691°0
LIL'0
a9L'e
0840
8090
7980
1680
¥e8'o
8260
8kL'0
ge9'0
q18'0
EET'0
LE8'0
06E0
¥ar'o
69L°0
FLLO
oLoa

980
9290
L¥g0
066'0
2350
0860
81070
$6£°0
IE7°0
0LZ’0
20L°0
06¥0
691°0
0e%°0
£€80°0
Lat'o
£12°0
6e¥'0
£91'0
CoE'0

T0L0
£6L0
YeT'0
598°0
¥80°0
209°0
¥88°0
¥EPQ
60L°0
20¥'0
¥2%°0
194°0
1L6°0
LILO
0100
ave'0
1180
Lago
E6E°0
S19'0

86T°0
9660
£96°0
3eL0
S8L°0
63€°0
¥OT°0
£09°0
6570
Zav’0
8EL°0
109°0
LE0'0
889'0
LSV'O
0gyo
TS0
Sr6°0
LEE'0
¥09°0

1990
609°0
£80°0
0880
(4340
Lyvo
0810
3030
0960
81¥'0
¥120
8ET1°0
991'0
6150
0120
1230
pANAY
arso
2190
6380

0'1 0L "0 WOY4 SHAFINNN WOANVHY WYHOJIINN 40 HTdV.L '6'¢ JT1dVL



padi o

CHAPTER 4

WEIBAYES — WHEN WEIBULLS ARE IMPOSSIBLE

4.1 FOREWORD

At times a Weibull plot cannot be made because of deficiencies in the data. Typical
situations would be when:

(1) 'There are too few or no failures,

(2) The age of the units is unknown, and only the number of failures is
known.

(3) A test plan for a new design is needed.

Weibayes analysis has been developed to solve problems when Weibull analysis cannot be

-used. Weibayes is never preferred over Weibull analysis but is often required because of

weaknesses in the data. Weibayes is defined as Weibull analysis with an assumed 8 parameter.
Since the assumption requires judgment, this analysis is regarded as an informal Bayesian
procedure.

4.2 WEIBAYES METHOD

In a Weibayes analysis, the slope/shape parameter 8 is assumed from historical failure data
or from engineering knowledge of the physics of the failure, Depending upon the situation, this
may be a strong or weak assumption. Given 8, an equation may be derived (Appendix E) using
the method of maximum likelihood to determine the characteristic life, 7.

N tf
— E - \fe
1 [1-1 ] 4.1)
Where t; is the time or cycles on unit;, r is the number of failed units and » is the maximum

likelihood estimate of the characteristic life.

With 8 assumed and 7 caleulated from equation {4.1), a Weibull equaticn is determined. A
Weibayes line can be plotted on Weibull paper. The plot is used exactly like a Weibull
distribution.

43 WEIBAYES — NO FAILURES

In many Weibayes problems no failure has occurred. In this case, a second assumption is
required. The first failure is assumed to be imminent; i.e. r = 1,0 (otherwise, the denominator in
equation (4.1) would be zero). The Weibayes line based on assuming one failure is conservative,
with at least 63% confidence that the true Weibull lies to the right of the Weibayes line. (See
Appendix E.}

The exact confidence level of the Weibayes lower bound is unknown because it depends on
the time to the first failure. If the Weibayes line is always constructed immediately before the
first failure, the Weibayes confidence level is 63%. If Weibayes analyses are consistently done
long before the first failure, the confidence level is actually much higher than 63%. Therein,
Weibayes displays conservatism since the confidence level, while unknown, is at least 63%.
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44 WEIBEST — NO FAILURES

In the early development and use of this analysis* 0.693 failures would be assumed instead
of 1.0. This is less conservative. The result was called a Weibest line. The Weibest line is a 50%
lower confidence bound on the true Weibull characteristic life versus 63 % for Weibayes withr =
1.0. In fact, Weibayes lines may be calculated for any confidence level (Appendix E).

4.5 UNKNOWN FAILURE TIMES

Sometimes the number of failures is known, but not the times to failure; again Weibayes
may provide a solution. For example, if the failed part is nonserialized and the component or
system has been through overhaul, it may be impossible to determine the time on the failed
unit(s) or the success unit(s). However, if the time on the components or systems is known, it
may be reasonable to assume that the same distribution of times applies to the nonserialized
parts. In this application, there is more uncertainty in assuming a value for 8. If the physics of
failure are known, a library of Weibull failure modes may provide an estimate or a range of
estimates; the maximum and minimum # may each be used to determine the sensitivity of the
analysis to the assumption.

If the times on the failed units are known but the times on the successful units are
unknown, a Weibull shift method may be employed. (See Section 6.3.)

46 WEIBAYES WORRIES AND CONCERNS

The Weibayes method is required when there are deficiencies in the data or when the data
are not available. The Weibull method is always preferred over Weibayes, so it is appropriate to
critically question the assumptions required by the Weibayes method in each case since the
answers to these questions vary for each application. Of course, the validity of the results
depends on the validity of the assumptions. Typical questions to be raised are:

{1) How valid is the assumed slope, 87 If this assumption is shaky, should a
range of slopes be tried?

(2) With a redesign, what is the probability that a new failure mode is
present? A Weibayes test may not discover a new mode.

(3) With nonserialized parts, some assumption must be made to obtain
success or failure times. How valid is the assumption?

4.7 EXAMPLES OF PROBLEMS/ANALYTICAL SOLUTIONS

Problem 1) Fifteen vane and case failures have been experienced in a large fleet of engines.
Weibull analysis provides a 8 of 5.0 (see Figure 4.1). Three redesigned compressor cases have
been tested in engines to 1600, 2900 and 3100 hours without failure. Is this enough testing to
substantiate the redesign?

" Mr. Joseph W. Grdenick of Pratt & Whitney Aireraft/Commercial Products Division Is credited for much of the
original development of the Weibest concept
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69




ot

Assuming 8 = 5.0 and given the times on the three redesigned units, equation (4.1) may be
used to calculate the characteristic life for a Weibayes solution,

= 3406 hr

- [(1600)5 + (2800)° + (3000)° ]:ra
! ! (4.2)

The Weibayes line is plotted in Figure 4.2. We may state with 63% confidence that the
failure mode for the redesigned units is to the right of this line and, therefore, significantly
better than the bill-of-material vane and case. It is possible that the redesign has eliminated this
failure mode but that cannot be proven with this sample of data. As more time is put on these
units without failure, the Weibayes line will move further to the right and more confidence will
be gained that the failure mode has been eliminated. The assumption of slope, in this case, is
based on an established Weibull failure mode and is valid.

Problem 2) There have been 38 turbopump failures in service (Figure 4.3). Based on the physics
of the failure, an accelerated bench test was designed and two more turbopumps failed in a
much shorter time (Figure 4.4). Notice that the bench test Weibull has the same slope as the
field failure Weibulls. This provides some confidence that the accelerated test provides the same
failure mode experienced in service. The turbopump was redesigned to fix the problem and two
units were tested on the bench to 500 hours without failure under the same accelerated
conditions. Is the redesign successful? What service experience should be expected?

Using equation 4.1 and the slope from the Weibulls in Figure 4.3, the Weibayes
characteristic life is caleulated, assuming the first failure is imminent.

. [500?-" + 500*7
g =

! 1™ = 646 hr

(4.3)

This Weibayes line is plotted on Figure 4.5. If we assume that the ratio of characteristic
lives (x's) for the B/M pump in service to the B/M pump in the rig test is a measure of the
acceleration of the test, a Weibayes line can be estimated for the redesigned pump in service.
This line is also plotted in Figure 4.5.

IRedesigned/Serviee = (IB/M/SVC ¥ TB/M/Rig) TRedesign/Rig

(2186.2 hr + 140 hr) 646.3 hr

(15.6) 646.3

ﬂRedeaignedjsemce = 10,082 hr

Problem 3) One batch of turbopumps (DF3) produced nine service failures involving fire in
flight. From a Weibull analysis, it was decided to replace these pumps after 175 hours of
operation, Two other batches of these pumps, DF1 and DF2, had more service time but no
failures. Teardown and inspection of some of these pumps showed that the failure mode
(swelling of the ball bearing plastic cage) was present but to a lesser degree. There were not
enough spare pumps to immediately replace the DF1 and DF2 units. How long can replacement
of DF1 and DF2 be safely delayed? '

70




| ] N ENEN
o WEIBULL. DISTRIBUTION :}
8 = 4,971
- T = 2132,247 / /
SAMPLE SIZE = 2755

o.|__|FAILURES = 15 /

o AN

,,, [ 1]

P NS S 1 O 8/ S T

=]

" WEIBAYES DISTRIBUTIO

8= 4,971

. 7 = 3406
8
%0
Zz,
8
[ ]
|
510-
Q
&
[v
gs.

® :
: |
Q)
¢
1 N
726 \ /
0.5 '.
(152) 388 ®
214
N 181 120 | 416 177
0.1 1 y
10, 2. 5 4 5 B.5.5.5%0. 2 5 owEebbsle. B LN ELLESi.

TIME SINCE OVERHAUL (HR)

FD 271862
G

Figure 4.2. Weibayes Evaluation of New Design in Accelerated Test

Lod

1



nae

aa.g

] IR EEEEE /
B51— WEIBULL DISTRIBUTION
B = 2.624
. % =2186.2
SAMPLE SIZE = 800
%0 FAILURES = 38
- 7
o IR N 1 B D O O y A
/
&
0.
20.
FIELD
EXPERIENCE

-
[~
.

n
.

CUMULATIVE PERCENT OCCURRED

N

0.1

<

9

/

10. 2. 3, 4, 5.6.1.848

3:n .mo.v 2, 3.
TOTAL OPERATING

Figure 4.3. Weibull Evaluation of B/M Design

72

4. 5. 6. 7.8.9.1000

TIME — (HR)

2. a., 4. E. E. 7.8.9,10000.

FD 271864




2.9
T T T ETTTT 7 /
% WEIBULL DISTRIBUTION /
s /
4
20
- /
5 d /
%2_ ————— e e i e aien e o e o ey e s Comp Y NN TS FO% T 1, l—--—- o s o
/ /
50
B/M LOW LUBRICITY ||/ /
[ TEST EXPERIENCE {1/
ol 2 FAILIRES | Wi
: /
&
:Jao.
: /
e ¢
%m I
i
a
2 ° / \
= \
2 \_ B/ FIELD
3 EXPERIENCE
(38 FAILURES)
1.
/ :
a.5. (.'\
5 |©
&
0.1 / .
10. 2. Je  #e 5. 8, 7.0.9 "JD-Q 2 3 4, 5. 8, 7.6.9,1000, 2 d. 4

TOTAL OPERATING TIME (HR)

Figure 44. Weibayes Evaluation of New Design in Accelerated Test

3

FD 271885




T T T TTTTI 7 7 7
S5 WEIBULL DISTRIBUTION // // /
) /f
80 A
. { 140 /|-e48 | / L—2186
. 1] 74 /_ 7
% _____ — e e o] ] e e e e . e e ] e e e i o s s i i s o
o / ) I _//
B/M LOW LUBRICITY -
w..| . TEST EXPERIENCE / /| 10,082
(2 FAILURES) / /
20, " A
a \ 0 V/
%m. J/ /
g REDESIGN LOW /
: W j
20 Y i /
2 / ef /
: /
> * A / 7
= /
|
2
=
Q

/ ~ B/M FIELD
J EXPERIENCE
(38 FAILURES)

o
Lo

é
/ /| “—REDESICN
/ PROJECTED
FIELD EXPERIENCE
0 ; / I I

v |
10. 2. 3. 4 5.6, % B.B.IOJ.V 2 3. 4. 5. B.7,8,9,1000. 2. 3. I&. Se E. 128.9.10000.

TOTAL OPERATING TIME (HR)

FD 271867

Figure 4.5. Hydraulic Pump Failures

74




There were no failures in DF1 and DF2 even though symptoms of the failure mode were
present, A Weibayes analysis, using the existing Weibull slope of § = 4.6 and assuming the 0.693
failures were imminent, produced the Weibest (50% confidence) line shown in Figure 4.6. The
DF3 retrofit at 175 hours corresponds to a risk level of B.7 as indicated in Figure 4.6. The same
risk level was applied to the Weibayes line and a 700 hr safe period was recommended. DF1 and
DF2 pumps were replaced when they reached 700 hours. This did not create a supportability
problem as these pumps had acquired very little time. Weibest and Weibayes lines move to the
right with time as long as no failures are observed due to the increase in success time. In this
case, the Weibest B.7 time eventually exceeded the pumps’ overhaul time of 1000 hours.
Therefore, many pumps were utilized to their full life without premature replacement based on
the Weibest Analysis,

4.8 PROBLEMS
Problem 4-1

Two bolt failures due to low cycle fatigue have been observed in a flight test fleet of six
engines having the following times: 100, 110, 125, 150, 90 and 40 hr. The bolts are not serialized
and as the failures were discovered after the engines were overhauled, it is not known which
engines had the failed parts. If low cycle fatigue failure modes usuaily have slope parameters
between 2 and 5, and after rebuild the engine will accumulate 100 hours in the next year, predict
the number of expected failures. (Assume the two new replacement bolts are installed in the
rebuilds of the high time engines.)

Problem 4.2

The design system predicted B.1 life for the compressor disk is 1000 cycles. Five disks have
accumulated 1500 cycles and five have 2000 cycles without any failures. If most disk LCF
failures have a 8 of 3.0, is this success data sufficient to increase the predicted design life?

Solutions to these problems are in Appendix J.
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CHAPTER 5

SUBSTANTIATION AND RELIABILITY TESTING

5.1 FOREWORD

The objective of this chapter is to address the statistical requirements of substantiation
and reliability testing when the underlying failure distribution is Weibull. Substantiation
testing demonstrates that a redesigned part or system has eliminated or significantly improved a
known failure mode (8 and 7 are assumed to be known). Reliability testing demonstrates that a
reliability requirement has been met.

It is assumed in the reliability testing section that the Weibull slope parameter, 8, is
known. If the failure distribution is known to be Weibull but 8 is unknown, test plans developed
by K. Fertig and N. Mann! may be used.

A test plan gives the required number of units and the amount of time to be accumulated
on each to ejther substantiate a fix or meet a reliability goal. It also gives a success criferion,
where the test is passed if the success criterion is met. In a zero-failure test plan the success
criterion is no failure: the test is passed if every unit runs the prescribed amount of time and no
unit fails while on test.

Test plans can also be generated with a 1-failure success criterion, a two-failure success
criterion, etc. But all of these plans require more testing than the zero-failure plan.

A measure of confidence is usually built into statistically designed test plans, guaranteeing
that if the failure mode in question has not been fixed or the reliability requirement has not
heen achieved, there is a low probability that the test will be passed. The zero-failure test plans
in this chapter guarantee with 90% confidence that the test will be failed if the required goal has
not been achieved. Thus, a part or system will have at most a 10% chance of being accepted as
satisfactory when in fact it is not.

5.2 ZERO-FAILURE TEST PLANS FOR SUBSTANTIATION TESTING

A ball and roller bearing system has a Weibull failure mode, unbalance, with 8 (the
Weibull slope parameter) equal to 2, and 5 equal to 500 hours. The system is redesigned, and
three redesigned systems are available for testing. How many hours should each system be
tested to demonstrate that this mode of unbalance has been eliminated or significantly
improved?

The Weibull plot in Figure 5.1 illustrates the time-to-unbalance distribution,.
Table 5.1 is used to answer this type of question. It is entered with the value of § and the

number of units to be tested. The corresponding table entry is multiplied by the characteristic
life to be demonstrated to find the test-time required of each unit.

iMann, N. R. and XK. W. Fertig, (1980) Lifo-Test Sampling Plans for Two-Parameter Weibull Populations.
Technometrics, 22, 165-177.
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TABLE 5.1 CHARACTERISTIC LIFE MULTIPLIERS FOR ZERO-FAILURE TEST

PLANS
CONFIDENCE LEVEL: 0,80
B
05 25 4.0 45 8.0
Sample Infant 1.0 15 20 Gradual 3.0 3.5 Rapid Wearout

Size Mortality Random  + iy Wearout ———— + + — (Brick Wall) — 4
3 0589 0767  0.838 0900 0916 0527 0938 0843 0948
4 0,331 0.676 0.692 0.759 0.802 0.832 0.854 0.871 0.884 0.895
] 0.212 0.460 0.586 0.679 0.733 0.772 0.801 0.824 0.842 0.856
6 0.147 0.384 0.528 0619 0.682 0.727 0.761 0.787 0.808 0.526
7 0,108 0.329 0477 0.574 0.641 0.690 0.728 0.757 0.781 0.801
8 0.083 0.288 0.436 0.536 0.608 0.660 0.701 0.732 0.758 0.780
9 0.065 0.256 0.403 0.506 0.580 0,635 0.677 0.711 0.739 0.761
10 0.063 0.230 0.376 0.480 0.556 0.613 0.6567 0.693 0.722 0.7456
12 0.037 0.192 0.333 0.438 0.617 0.577 0.624 0.662 0.693 0.719
14 0.027 0.164 0.300 0.406 0.486 0.648 0.597 0.637 0.670 0.697
16 0.021 0.144 0.276 0.379 0.461 0.524 0.576 0.616 0.660 0.679
18 0.016 0.128 0.254 0.358 0.439 0.504 0.658 0.598 0.633 0.663
20 0.013 0.115 0.237 0339 0.421 0.486 0.539 0.582 0.619 0.649
25 0.008 0.092 0.204 0.303 0.385 0.452 0.506 0.551 0.589 0.621
30 0.006 0.077 0.181 0.277 0.358 0.426 0.480 0.526 0.565 0.598
40 0.003 0.058 0.149 0.240 0.319 0.386 0.442 0.490 0.630 0.566
50 0.002 0.048 0.128 0,215 0,282 0.368 0.416 0.463 0.505 0.540

In the ball and roller bearing example, Table 5.1 is entered with 8 equal to 2.0 and a sample
size of three, The corresponding table entry is 0.876. The characteristic life to be demonstrated
is 500 hours. The number of hours that each system should be tested is:

0.876 X 500 hours = 438 hours.

Thus, the zero-failure test plan to substantiate the ball and roller bearing system fix is: test
three systems for 438 hours each. If all three systeras are in balance at the end of the test, then
the unbalance mode was either eliminated or significantly improved (with 90% confidence).

If there is a constraint on the amount of test time accumulated on each unit, Table 5.2 is
used to determine the number of units required for the test. For example, suppose in the
previous example that no more than 300 hours could be aceumulated on any bearing system.
Table 5.2 is entered with the known value of 8 and the ratio of the test time to the characteristic
life being substantiated. In the ball and roller bearing system example, Table 5.2 is entered with
Bequal to 2.0 and the ratio - i

300 test hours per system 0.6
500 hour characteristic life ~— ™

The corresponding entry in Table 5.2 is seven. The resulting test plan is: test seven systems for
300 hours each. If all seven systems are in balance at the end of the test, then the unbalance
mode was either eliminated or significantly improved (with 90% confidence).
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TABLE 5.2 REQUIRED SAMPLE SIZES FOR ZERO-FAILURE TEST PLANS
CONFIDENCE LEVEL: 0.90

4
0.5 25 4.0 4.5 5.0
Infant 10 1.5 20 Grodual 3.0 3.6 Rapid Wearout
Ratio Mortality Random + ------  Wearout ------ + + — (Brick Wall) —~ +
0.01 24 231 2303 23025 PR T LT P EL L P2 Lt ] Er 2 1L EE1E L] [T 1E ]
0‘02 17 116 815 5757 40703 L ET L) EI L 2L ] L2113 (1 )] [ $ 1] 2]
0.03 14 77 444 2669 14771  BGR78 v wessx sdeas vk
0.04 12 68 288 1440 7196 35977 e b bk L) wny LLEL LS
0.05 11 47 206 922 4119 18420 82377  *eerE kEeks sdkes
0.06 10 39 157 640 2612 10660 43519 plg s iy b Ly
0.07 9 33 125 470 1777 6713 25373  0OHBOS  eeess  erkes
0.08 9 29 102 360 1272 4498 16900 56214  wwese wewen
0.09 8 26 86 285 948 31569 36094 35094 SELLE] Lo
0.10 8 24 73 231 729 2303 7282 23025 72812 2 meees
0.20 6 12 26 58 129 288 644 1440 3218 7196
0.30 5 8 16 26 47 86 156 285 519 948
0.40 4 6 10 16 23 36 57 90/ . 143 225
0.50 4 & 7 10 14 19 27 a7 53 74
0.60 3 4 b 9 11 14 18 23 30
0.70 3 4 4 5 6 7 9 10 12 14
0.80 3 3 4 4 b 6 6 6 7 8
090 3 3 3 3 3 4 4 4 4 4
1,00 3 3 3 3 3 3 3 8 3 3

=x»=¥Indicates sample size exceeds 100,000

5.3 ZERO-FAILURE TEST PLANS FOR RELIABILITY TESTING

This section contains zero-failure test plans for demonstrating a reliability goal when the
underlying failure distribution is Weibull with known slope parameter f. A turbine engine Q
combustor’s reliability goal was 99% reliability at 1800 cycles under service-like conditions.
Success was defined as a combustor having no circumferential cracks longer than 20 inches (out
of a possible 53 inches). The number of cycles required to reach a 20-inch crack was known to
follow a Weibull distribution with £ equal to 3. How many combustors must be tested, and how
many cycles must each accumulate, to demonstrate this goal with a high level of confidence?

First, the reliability goal is re-expressed as a characteristic life goal, and then the test plan
is designed.

Re-expression of Reliability Goal

Reliahility requirements generally assume one of the following forms:
Form 1: The reliability of the unit is required to be at least X% after a certain
number of hours or cycles of life. (This is equivalent to the percent
failing being at most 100-X%). The Weibull plot in Figure 5.2
illustrates the requirement of at least 99% reliability (at most 1%
unreliability) at 1000 hours.

Form 2: The B10 life (or Bi life, or B.1 life, etc.) is required to be at least X
hours or cycles. By definition, the unit has a 10% chance of failing
before reaching its B10 life, a 1% chance of failing before reaching its
B1 life, ete. See Figure 5.3.
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Figure 5.4 illustrates the requirement of a 7000 hour B10 life.
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Reliability requirements assuming either of these two forms can be expressed as a
minimum characteristic life requirement. Given that the time-to-failure distribution is Weibull,
with a known 8, reliability at time t is a function of »:

R(t) —_ e-(l.h)"

(6.1)
This expression can be rearranged algebraically, giving
y o —t
[—In R(t)]V (5.2)

Equation (5.2) can be used to express either form of reliability requirement in terms of 7. If the
requirement is, for example, that the reliability of the turbine engine combustor must be at least
0.99 at 1800 cycles (8 = 3), then substituting t = 1800 and R(t) = 0.99 into equation (5.2) gives

_ 1800
[—In(0.99)]2

orn = 8340.9

The 0.99 reliability requirement is equivalent to the requirement that 5 be at least 8340.9 cycles.
See Figure 5.5.

Similarly, if the requirement is a B10 life of 2000 hours, then substituting t = 2000 and
R(t) = 0.90 into equation (5.2) gives

2000 .
= W,assummgﬁ = 2

or g = 6161.6

Thus, the B10 life requirement of 2000 hours with § = 2 is equivalent to the requirement
that 5 is at least 6161.6 hours. See Figure 5.6.

Designing Test Plans

Once the minimum characteristic life requirement has been calculated, Tables 5.1 and 5.2
can be used to design the test plan.

In the combustor reliability ezample, the 99% reliability goal at 1800 cycles was re-
expressed as an 8340.9 cycle characteristic life goal. Ten combustors were available for this
reliability demonstration test. To find the test cycles required of each combustor, enter Table
5.1 with B equal to 3.0 and a sample size of 10. The corresponding table entry is 0.613. Multiply
the table entry by the characteristic life requirement to find the test time required of each unit,
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In the combustor example, multiplying the Table 5.1 entry of 0.613 by the characteristic
life requirement of 8340.9 cycles gives a test time of:

0.613 X 8340.9 cycles = 5113.0 cycles.

Thus, the zero-failure test plan to demonstrate 99% reliability at 1800 cycles requires testing 10
combustors for 5113 cycles each. If no combustor develops a circumferential erack Ionger than
20 inches, then the test is passed.

How many combustors are required if each can accumulate at most 750 test cycles? To
answer this, enter Table 5.2 with the assumed value of 8, the Weibull slope parameter, and the
ratio of the test time to the calculated characteristic life requirement. In the combustor
example, 8 was assumed to be 3.0, and the ratio of the test time to the calculated characteristic
life requirement is:

750 test cyeles per combustor
8340.9 cycles characteristic life

= 0.09

The corresponding entry in Table 5.2 is 3159, The resulting test plan requires testing
3159 combustors for 750 cycles each. If no combustor develops a circumferential crack longer
than 20 inches, then the test is passed,

5.4 TOTAL TEST TIME

Two reliability test plans were constructed in Section 5.3 to demonsfrate that a
characteristic life was at least 8340.2 cycles, with 90% confidence.

Number of Test Cycles Total Test
Combustors Per Combustor Cycles
Plan 1 3,159 750 3,159 X 750 = 2,369,250
Plan 2 10 5,113 10 X 5,113 = 51,130

Note that, in terms of total test cycles, it is more efficient to run the smaller number of
combustors for a greater number of cycles. Plan 2 demonstrates the same reliability as Plan 1,
but requires fewer total test cycles.

This efficiency is realized for every test plan in this section where 8 exceeds 1.0.

The situation is reversed for S less than 1. In this case, the greater the number of units on
test, the lower is the total test time.

When 8 is 1, the total test time is constant, regardless of the number of items on test.
5.5 ADVANTAGES AND LIMITATIONS OF THE ZERO-FAILURE TEST PLANS

The test plans introduced in Section 5.2 limit the probability that substandard reliability
units will pass the tests. This is generally the most important goal in reliability testing. Also, the

test plans are simple and easy to use.

However, they are only designed to limit the acceptance of substandard rehabxhty items.
They do not control the probability that units from a high reliability design will pass the tests.
9
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In some instances, the experimenter is interested in guaranteeing a high probability of
acceptance for high reliability units.

For example, to demonstrate that a characteristic life is at least 2000 hours with 90%
confidence, assuming 8 = 2.5, requires that 14 units be tested 1000 hours without failure, (Enter
Table 5.2 with 8 = 2.5 and the ratio 1000 test hours per unit/2000 hours = 0.5 to find 14 units.)
Another requirement might be that designs with characteristic lives greater than 4000 hours
pass the test with at least 90% probability. The zero-failure test gives these high-reliability
designs only & 65% chance of passing. (See Figure 5.7.)

There are two remedies for this problem. The minimum characteristic life requirement can
be reduced enough to guarantee a suitably high probability of acceptance for high reliability

units, or the size of the test can be increased until both requirements are met. The second option

is considered in Sections 5.6 through 5.8.

The curves in Figure 5.7 assist the experimenter in determining how much to reduce the
minimum characteristic life requirements to meet high reliability requirements. They give the
probability of passing the zero-failure test as a function of the Weibull parameter § and the ratio
of the characteristic life of interest to the minimum required characteristic life. For example, the
probability of successfully completing the zero-failure test mentioned earlier in this section for
units whose characteristie life is 4000 hours is 0.65. To see this, enter the § = 2.5 curve of Figure
5.7 with the x-axis ratio of:

4000 hours (characteristic life of interest)

R = 2000 hours (minimum characteristic life requirement)

orR=2.0.

The probability of successfully completing the test, from Figure 5.7, is 0.65.

In the preceding example, suppose the characteristic life requirement were dropped from

2000 hours to 1250 hours. Only five units would have to be tested 1000 hours, instead of 14.
(Enter Table 5.2 with 8 = 2.5 and the ratio {1000 test hours per unit/1250 hour characteristic life
requirement} = 0.8, to get the five-unit requirement). To find the probability of acceptance of
the 4000-hour characteristic life design, enter the 8 = 2.5 curve in Figure 5.7 with a ratio of 4000
hours/1250 hours = 3.2. The chances of passing are 88% — close to the 90% requirement.

Reliability demonstration tests that terminate successfully with no failure have one other
advantage. Very high reliability often makes a demonstration test-to-failure impractical. In this
case, a zero-failure test plan is desirable, The risk is that unless some units are run to failure, the
statistical assumptions inherent in the test design cannot be validated. (For example, with failed
units, the Weibull slope parameter 8 can be estimated and compared to the assumed value of 8.)

56 NON-ZERO-FAILURE TEST PLANS

In Section 5.2;,test plans were introduced to demonstrate that a lower limit characteristic
life had been achieved, with 90% confidence. The plans assume that the unit’s time-to-failure

* distribution is Weibull with known slope parameter 8.
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As discussed in Section 5.5, these tests do not control the risk of rejecting units with
acceptably high characteristic lives (called producer’s risk). They only control the risks of
passing the test with a characteristic life below the lower limit (called consumer’s risk). This risk
was get at 10%;.

The methods for test plan construction introduced in this section provide control over both
forms of risk if the zero-failure plans do not adequately balance the two. The methods can be
found in “Methods for Statistical Analysis of Reliability and Life Data™.

5.7 DESIGNING TEST PLANS

These tests will have the following structure:

A. Putnitems on test for t hours (cycles) each.
B. When an item on test fails, it is not replaced.
C. I ryor fewer failures occur, the test is passed.

This section describes methods for calculating 1, and n satisfying the two constraints:

A. The probability of passing the test with a characteristic life as low as 1, 3
should be no more than a, (minimum life requirement),

B. The probability of passing the test with a characteristic life as high as n
should be at least a;.

7, 18 the characteristic life to be demonstrated. 7; is sometimes referred to as the “design”
characteristic life. &, is usually set at 0.05 or 0.1, and a is usually set at 0.9 or 0.95.

The equations to be introduced require the definition of some standard mathematical
notation.

A, Summation

Zx =x +x+ — — - +x,

i=1

1 Mann, Naney R., Ray E. Schefer, and Nozer D, Singpurwalla (1874), Methods for Statistical Analysis of Reliability and
Life Data, John Wiley and Sons, New York, Chapter 6, pp 812-315 and p 328.
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B. TFactorial
n! = n-(n—1)-(M—2)eececeee- 2.1

C. Number of subgets of size r from a set of n

(2) - &=

Assuming that the time-to-failure distribution of the items on test is Weibull, with known
parameter 5, the following equations should be solved for ryand n to satisfy the two “probability
of passing” requirements.

— 2 n e n—r
@ = fﬂ( 5 ) pE1—p) 59

1

?’3‘( T )pi(1~—p1)""'

oy
=0 (5.4)

where pg= l—e'w"ﬁ)ﬂ
P = 1_3-(tfﬂ1)ﬂ

t iz the test time per unit

n is the number of units on test

I, is the allowable number of failures

7 is the demonstrated characteristic life

n, is the design characteristic life

B is the assumed value of the Weibull slope parameter

ayis the probability of passing the test with a characteristic life equal to 74 (2
is set by the experimenter)

w, is the probability of passing the test with a characteristic life equal to 7y (a;
is set by the experimenter)

Equations (5.3) and (5.4) generally require a computer for their solution. Certain computer
packages are available that golve these equations. Dr. K. E. Case of the Oklahoma State
University School of Industrial Engineering and Management (Stillwater, Oklahoma) built an
interactive program that includes the ability to solve equations (5.3) and (5.4}

Equations (5.3} and (5.4) generally cannot be solved for a combination of n and ry that
satisfy the target probabilities gand a; exactly. Some authors recommend solving the equations
g0 that the actual probability a, of passing the test with 7 = #, is no greater than o, and the
corresponding true probability «y is at least as great as ay. The next section discusses the
method recommended by Dr. Case! for solving equations (5.3) and (5.4).

1Case, Kenneth E. and Lynn L. Jones (1979), “An Interactive Computer Program for the Study of Attributes
Acceptance Sampling. Final Technical Report,” Ollahoma State University, School of Industrial Epgineering and
Management, Stillwater, Oklahoma.
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5.8 RECOMMENDED METHOD FOR SOLVING EQUATIONS

Dr. Case’s final technical report! describes the recommended method. It consists of the
following steps:

1. Calculate pp=1- e‘(u”o)g
=1 — a—(tfH)

pp=1~-e""
2. Setry=0
8. Find the values of n that satisfy equations 5.3 and 5.4. Call them n; and n,,

respectively.
_ DoPo _

4. Calculatea = = and b = p,/p;.

5. If ais greater than b, increase 1, by 1, and repeat steps 3, 4, and 5.

6. Continue the process until two contiguous values of ry are found whose
calculated a-ratios bound b.

7. Select as the final value of r, that which has the a-ratio nearer the desired
ratio b = py/p,.

8. For the selected value of ry, there are two values of n,nj and n,, calculated in
step 3. Average nyand n, to get the final sample size:

_ np+n
=T

59 PROBLEMS
Problem 5-1

A turbine engine exhaust nozzle control bearing was failing prematurely due to fatigue.
Bearing failures followed a Weibull distribution with 8 equal to 1.5 (a common value for bearing
fatigue) and 5 equal to 3000 hours. The bearing was redesigned, and the environment in which it
operated was improved to give the bearing a higher expected life. Twenty redesigned bearings
were available for testing, How long should each be tested to demonstrate, with 90% confidence,
that the fatigue mode was significantly improved?

Problem 5-2

High pressure turbine vanes were eroding beyond aliowable limits. A significant percentage
of the engines in service were being removed for vane repair or replacement prior to their
scheduled turbine maintenance. The time to failure — determined by the worst vane in the set
— followed a Weibull distribution with # = 3 and » = 1300 cycles.

Through redesign and material changes the vane’s durability was improved. Design a test
to demonstrate the new vane’s goal: no more than 5% of the engines should ke removed by 2300
cycles for vane erosion {(with 90% confidence). During this test, assume that the turbines are

1 Cose, Kenneth E. and Lynn L. Jones (1979), “An Interactive Computer Program for the Study of Attributes
Accoptance Sampling. Final Technical Report,” Oklshoma State University, School of Industrial Engineering and
Manggement, Stillwater, Oklahoma.
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limited to running at most 5000 cycles each. Also, assume that the time to engine removal for
excessive vane erosion would still follow a Weibull distribution with 8 = 3.

Problem 5-3:

In Section 5.5, the zero-failure test plan was given to demonstrate that the characteristic
life of a Weibull distribution with 8 = 2.6 is at least 2000 hours, with 90% confidence. It
required that 14 units be tested 1000 hours. The test is passed if none of the 14 units fails during
the 1000 hours of testing.

The additional requirement was added that units with characteristic lives greater than
4000 hours should pass the test with at least 90% probability. It was shown that the zero-failure
test plan could only guarantee a 65% chance of passing.

Use the methods introduced in Section 5.8 to construct a test satisfying all of the above
Tequirements.

Solutions to these problems are in Appendix J.
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CHAPTER 6

CASE HISTORIES WITH WEIBULL APPLICATIONS

6.1 FOREWORD

This chapter provides examples of Weibull analysis used in a variety of situations. The
examples were chosen from studies which include the complete cycle of analysis, deduction,
recommendation, and implementation. The case studies selected are:

(1) Turbopump Bearing Failures

(2) Gearbox Housing Cracks

(3) Opportunistic Maintenance Screening Intervals
(4) Support Cost Model

(5) Vane and Case Cracking.

6.2 EXAMPLE 1: TURBOPUMP BEARING FAILURES

When this study began, three failures of the augmentor turbopump of an aircraft fighter
engine had occurred in the field. This was an urgent problem because the failure enabled fuel to
escape and ignite. Because of this hazard, top priority was assigned to the analysis of data that
might help resolve this problem.

6.3 INITIAL ANALYSIS — SMALL SAMPLE

The first analysis was the evaluation of the three failures through Weibull analysis. Note
that this was an extremely small sample from the 978 turbopumps that were operating in the
fleet. The data were ranked by turbopump operating time, treating the successful pumps as
censored units. The resulting Weibull plot is shown in Figure 6.1.

Even with this small sample some valuable observations could be made. First, the very
steep slope, 8 = 10, indicates that the failure mode is one of rapid wearout preceded by a
relatively safe period. Inspection of Figure 6.1 shows that the probability of a turbopump failure
prior to 200 hours is negligible, but after 250 hours the probability increases rapidly.

A second inference can be made from the initial Weibull analysis. The very steep slope (8
= 10) along with the existence of many unfailed pumps with run times greater than the failed
pumps suggests that the failed pumps are part of a unique batch. The method used to determine
whether or not a given failure mode is a batch problem is to evaluate the Weibull equation with
the parameters calculated (Figure 6.1) for each successful and failed turbopump. For each
pump, the probability of failure is determined from the Weibull equation and these probabilities
are then summed. If the failure mode applies to the entire fleet, the sum of the cumulative
probabilities should approximate the number of failures observed, in this case 3. For example:
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Figure 6.1. Weibull Plot for Augmentor Pump Bearing

95



Hiol

IRt = 21 — e~ W) 6.1)

where:

ZF(t;) = sum of probabilities of each unit

t;= time on each unit (both failed and unfailed)
7 = 520.963 = characteristic life

B8 = 10.094 = slope of Weibull

e = exponential (base of natural logarithms).

However, with these data the answer was 117 failures, indicating that the failure mode applied
to less than the entire fleet of turbopumps. Recommendations were made to Project Engineering
that the turbopump vendor and the bearing vendor should review their processes to determine if
anything had changed, either in the process, the material, or the assembly. Initially, no change
was found that supported the batch hypothesis,

6.4 TWO MONTHS LATER - BATCH IDENTIFIED

At this point in the analysis there were seven confirmed and two unconfirmed failures. It
was observed that the serial numbers of the failed pumps were all quite high, ranging from
No. 671 to No. 872 in the sample of approximately 1000 pumps. The closeness of serial numbers
supported the hypothesis that this was a batch problem. If it is assumed that the batch started
at the first failed part, Serial No. 671, and extended to the latest pumps produced, the Weibull
equation generated fewer than nine failures, By iterating, it was found that by starting at Serial
No. 650 nine failures were generated, corresponding to the seven observed and two unconfirmed
failures. (See Figure 6.2.) This indicated there were about 353 pumps in the batch.

6.5 RISK PREDICTION

With a serious problem involving approximately 350 pumps, the next step was to forecast
the number of failures which could be expected in the near future. The risk analysis was
performed using the methods described in Chapter 3, and was limited to 353 suspect pumps,

The total operating time on engines is kept in a data system that is updated monthly. It is
also known that each pump accumulates an average of 25 hours operating time per month. The
risk analysis is illustrated in Figure 6.3, With the 353 pump times for the Weibull curve in
Figure 6.2, a cumulative total of 9.17 failures can be calculated for the “now” time using the
method explained in Chapter 8. Increasing each pump’s time by 25 hours and again
accumulating the probabilities of failure, the value of 12.26 was obtained. The delta between
9.17 and 12.26 indicated that approximately three more failures were expected in the next
month. This analysis covered 24 months of operation and the results are presented in Table 6.1.

As the forecast indieates, almost all of the suspect lot was expected to fail within a little
more than two years. This was obviously a serious problem if the analysis was correct.
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TABLE 6.1 PROJECTED PUMP FAILURES

Distribution
Prob of
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Movement of Flest
7 | Aging 25 Hours/Mo

7 |

L L
/ |
Time (Hr)

FD 238533

Cumulative

Failures Forecast Future Failures
9.17 0.0 More Failures In ¢ Months
12.26 3.12 More Failures In 1 Months
16.22 T7.08 More Failures In 2 Months
21.14 11.98 More Failures In 3 Months
2718 18.02 More Failures In 4 Montha
34.50 25,33 More Failures In 5 Months
45.21 34.05 More Failures In 6 Months
63.44 44,27 More Failures In 7 Months
65.24 §6.07 More Failures In 8 Months
178.65 69,48 Mora Failures In 9 Months
93.64 84.47 More Failures In 10 Months
110.14 100.97 More Failures In 11 Months
128.01 118.86 More Failures In 12 Months
147.11 137.94 More Failures In 13 Months
167.21 158,05 More Failures In 14 Months
188.08 178.91 More Failures In 15 Months
209.40 200.24 More Failures In 16 Months
230.82 221.66 More Failures In 17 Months
251.89 242.73 More Failures In 18 Months
272.07 262,80 More Failures In 19 Months
290.75 281.568 More Failures In 20 Months
307.32 298.16 More Failures In 21 Months
321.27 312,11 More Failures In 22 Months
332.29 323.12 More Failures In 23 Months
340.34 331,18 More Failures In 24 Months

§ = 584 n = 462,2 N = 353
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Based on this analysis, it was recommended to Project Engineering that turbopumps
No. 650 and up with more than 175 hours of time be replaced in the fleet. Fortunately, there
were sufficient spare turbopumps to allow this to be accomplished without grounding aircraft,
In addition, this would not have been possible without the knowledge of the relatively low risk
between 0 time and 200 hours. This action was effective as there were no more field failures.

Laboratory analysis of the failed pumps indicated that the failure mode was caused by
swelling of the plastic ball bearing cage to the extent that the balls would skid, causing the
bearing to fail. Coordinating with the turbopump manufacturer, the bearing manufacturer, and
the plastic manufacturer, a statistical factorial experiment was designed to determine the cause
of the swelling of the plastic cages for corrective action.

6.6 FOUR MONTHS LATER — FINAL WEIBULL PLOT

Inspection of the turbopumps replaced in sexvice (Number 650 and up with 175 hours or
more) revealed 15 more bearings considered to be imminent failures. The addition of these
failures to those originally seen in the field produced the final Weibull plot with 24 failures in a
sample of 387 turbopumps (Figure 6.4). Note that the original three-failure curve is a good
approximation of the final plot, the only difference being that the earlier curve had a steeper
slope (10 rather than 4.6) as indicated on Figure 6.1. Although this slope difference sounds large,
in fact, the inference from either curve would be substantially the same, that is, a rapid wearout
problem. The second Weibull based on seven failures was also a good approximation of the finat
Weibull (Figure 6.4).

By this time the results of the statistically designed factorial experiment were available. It
was found that a process change had been made in the manufacture of the plastic cage to reduce
costs. The change resulted in cages of lower density. When these lower density cages were
subjected to the combination of heat, fuel, and alcohol, the aleohol diffused through the plastic
causing it to swell and crack. All such cages were removed from service. (Alcohol is a de-icing
agent added to jet fuel.)

6.7 EXAMPLE 2: MAIN GEARBOX HOUSING CRACKS

The main gearbox housing on some engines developed cracks in the field. This type of
crack would usually be discovered during an inspection for oil leaks. Cracked housings were
being discovered at a rate of 1/20,000 hours of operating flight time, This was a ruggedly built
gearbox housing, and it was questioned whether each crack was one of a kind or whether they
were related events. Also, this identical gearbox was being introduced into a new aircraft, and it
was questioned whether the same failure mode would appear in the new installation.

6.8 INFORMATION AVAILABLE FOR ANALYSIS

Once the field was alerted to cracked housings, a quick inspection revealed 27 cracked
units. Of the 27, four housings were from the new aircraft.

At the outset, there was considerable discussion as to whether the data should be grouped
together or a separate analysis should be completed for each aircraft type. Because of the
different missions of the two aircraft, it was decided that separate analyses should be run. The
Weibull analysis is presented in Figure 6.5 for both Aircraft 1 and Aircraft 2.
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At the time of the analysis, there were 23 cracked housings out of 1,526 in the Aircraft 1
fleet. From Aircraft 2, 4 out of 213 engines in the field were found with cracks in the housings.
Both curves represented wearout modes, with Aircraft 2 having failures occurring earlier and at

a faster rate (i.e., steeper slope).
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One additional item which should be noted, especially in Aircraft 1, is that the data do not
fall on a straight line. Ordinarily, data of this nature indicate that there may be more than one
mode of failure. However, leaks and cracks of this type do not usually result in engine failure
and are not discovered until an inspection is performed. The run time on the component at the
time of the leak or crack is usually not well defined, and the Weibull is distorted by the
clustering of events discovered at inspection. This would be especially true if the time between
inspections is large but occurring at specific times. One way to correct for this type of analysis
problem is to correct the data back to a common crack length. However, the correction factor
often comes under question and the easiest way to avoid this argument is to present the data as
they are obtained.

6.9 RISK ANALYSIS

A risk analysis for forecasting future failures was requested. This analysis used methods
discussed in Chapter 3. The results of the analysis are presented in Figure 6.6 for both aircraft
through 1982. It can be seen that Aircraft 2 has a lower characteristic life than Aircraft 1. This
finding led to an investigation to determine if there were differences between the two aircraft
which would account for the difference in characteristic life. Strain gages and vibration pickups
were placed on gearboxes of each aircraft and data were obtained. It was concluded that Aireraft
2 was subject to more vibratory stresses which shortened the fatigue life of the gearbox. This
would explain the steeper Weibull slope for Aircrafi 2.
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Figure 6.6. Cumulative Main Gearbox Housing Cracks
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6.10 DETERMINING THE FIX

The fix for this problem was a fairly simple one. The cracking originated in the coverplate
of the gearbox. The driving force was a coverplate resonance at certain engine speeds. The
coverplate was redesigned not to resonate at these frequencies, thus eliminating the problem.

6.11 HOW GOOD WERE THE FORECASTS?

Because of the time lag from problem definition to the incorporation of a fix, additional
failures may occur. This presents an opportunity to evaluate how well a forecast did and to
monitor the effects of sample size on the Weibull parameters.

This problem was tracked for two years after the original analysis was complete, The
findings of the initial analysis considered 23 cracks for Aireraft 1 and four cracks for Aircraft 2.
The analysis was repeated several times for each aircraft as more information became available.
Results of the follow-on analyses are presented in Table 6.2.

TABLE 6.2 FOLLOW-UP ANALYSIS RESULTS

7

Date No. of Engines  No. of Cracks 8 (hours)
Aircraft 1
Original 1628 23 1736 7678.3
12 mo. later 1609 41 1.782 6552,8
24 mo. later 1949 62 L1716 7038.0
Aircraft 2
Original 213 4 2.842 1.5
12 mo. later 500 - 10 2,348 1633.7
24 mo. later 732 13 1.805 3604.8

With the large number of cracks associated with Aircraft 1, the Weibull is stable. However,
Aircraft 2’s Weibull has changed considerably. This is typical and is discussed extensively in
Appendix F. The risk analysis reflects the type of conservatism that would be expected from the
results of the initial analysis, The steepness in the slope would cause an overprediction of the
expected number of cracks. From a risk viewpoint this could be considered as safety margin.
However, before any action is taken to incorporate an engineering change to correct the
problem, an analysis must also be performed to determine the cost effectiveness of the change.

6.12 EXAMPLE 3: OPPORTUNISTIC MAINTENANCE SCREENING INTERVALS

Often gas turbine engines are gsent to the shop because of unexpected hardware failures or
foreign object damage. Although the primary concern is the repair of the engine, the question
also arises should the engine undergo its next scheduled maintenance while it is available in the
shop. The answer is based on economic considerations and depends on how cloge the engine or
its modules are to the next scheduled inspection.

For example, if an engine is in the shop for repair after 1340 cycles of operation and is due
for a scheduled inspection at 1350 eycles (one cycle being equal to about 0.8 hour of engine flight
time), there would be no question that it should be inspected before re-installation in the
aircraft. If, however, the engine is in the shop at 1150 cycles, it is not so obvious that the 1350
cycle inspection should be performed. If the engine is in the shop at 500 cycles, it obviously
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should not be inspected (costly part replacements are involved). There is, therefore, a break-
even point to be determined.

6.13 STRUCTURING THE PROBLEM

The trade to be made considers avoiding a scheduled engine removal versus the scrapping
of parts whose life is not quite used up. The opportunistic use of an unscheduled engine removal
to perform the scheduled inspection and replacement of life-limited parts not only allows saving
the labor involved in engine removal and replacement but also allows the purchase of fewer
“pipeline” spare engines and modules. These savings are weighed against the added costs
incurred by replacing parts early.

6.14 FINDING THE OPTIMUM INTERVAL

Monte Carlo simulation is the method preferred for evaluating the range of opportunistic
maintenance intervals. The U.S. Air Force has such a simulator which (with some modification)
could be used for determining the optimum opportunistic maintenance interval. The simulator
is structured to perform scheduled maintenance whenever the Monte Carlo process selects an
unscheduled engine removal which falls within a predefined screening interval, The process is
repeated for various screening intervals, and the resultant total support cost is plotted against
the selected screening interval to determine the optimum. Figure 6.7 is an ilustration of this
procedure.

The Weibulls are used to describe each of the engine modules’ major failure modes (reason
for unscheduled removal). Where improvements have been incorporated, the Weibulls are
adjusted to reflect the improvements. Only with a valid representation of the way in which each
removal cause varies with time could a realistic assessment be made.

The simulation analysis was performed and an opportunistic maintenance interval of
300 cycles was determined. This provided the Air Force with an economic decision criterion for
performing scheduled maintenance,

6.15 EXAMPLE 4: SUPPORT COST MODEL

The support cost model uses a Monte Carlo approach to simulate the interaction of
scheduled and unscheduled maintenance events. The unscheduled events are entered in the
form of Weibull curves relating event, probability, and time. Scheduled events are entered at
specific times. A screening interval is input to define a time period during which scheduled
events can be precipitated by unscheduled opportunities. (See Figure 6.8.) Labor and material
costs are input for each event. The model selects corresponding labor and material costs for each
event and compiles totals for the number of events and for labor and material costs by report
period (year)., Totals are divided by the number of flight hours for the report period to derive
rates per flight hour.

The model makes a predesignated number of passes through the life cycle (20 years) and
reports the average of the passes by report period. The number of events per year can therefore
appear as a non-integer.
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Unscheduled maintenance events, input as Weibulls, are of four basic types: 1)
unscheduled engine removals (UER's), 2) unscheduled module removals which are coincidental @
with an engine removal (coincidentals), 3) unscheduled part removals which are coincidental
with a module removal (part coincidentals), and 4) installed maintenance events. As stated
above, each of these event inputs is accompanied by a corresponding labor and material cost. It
is also accompanied by factors which designate those percentages of events which precipitate
engine or module depot visits and demands for spare modules.

Scheduled event input is also accompanied by labor and material costs per event. Material
is input as a total cost of parts involved in the inspection along with a percentage to be scrapped
at each event. This scrap rate can vary among the events of a particular sequence.

The input is then a combination of Weibulls, scheduled intervals, material and labor costs,
depot visit factors, and supply system demand factors. Output is reported at the module (failure
mode) level, by report period (year), in terms of total quantities and rates per flight hour.
Parameters reported include engine removal and depot visits, module removals and depot visits,
module demands, labor and material costs broken down by depot and base, and scheduled vs
unscheduled maintenance for each report period and for the total life cycle.

6.16 ROLE OF THE WEIBULL

Unscheduled engine maintenance, as indicated above, is driven by both scheduled and
unscheduled events. The unscheduled events are caused by some failure modes that occur
randomly and others that exhibit wearout characteristics, i.e., an increasing failure rate. The
Weibull is the most convenient method of introducing these increasing rates into the model.

The Weibull is deseribed by only two parameters, the characteristic life, , and the slope, 8.
Figure 6.9 illustrates.the use of Weibulls with 8 > 1 for life limited parts and 8 = 1 for randomly
distributed failure modes. Infant mortality, although seldom encountered in an operational
engine, can also be simulated by 8 < 1.

g>1 Random (8 = 1)

0.632 | vom o s e o m—— —— — e — — —— —

Replacement
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Fallure
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Flight Hours or LCF Cycles
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Figure 6.9. Unscheduled Maintenance Input via Weibulls

106

auoC



Mo

6.17 EXAMPLE 5: VANE AND CASE FIELD CRACKS

Cracks found in the 12th stage vane and case of a high pressure compressor precipitated
this study. There was concern of case rupture if the cracks grew large enough to weaken the
structure. The major questions were:

(1) How will the problem affect engines?

(2) What can be done to fix the problem?

(8) Can the problem be detected through inspection?

(4) What recommendations should be made to the Air Force?

6.18 RESOLVING THE QUESTIONS

Seven cracked cases were identified. The eracks were all of different lengths but shorter
than considered critical. One question which often arises from this type of analysis is whether to
normalize the times to a constant crack length. It was decided to proceed without, the corrections
on the times and construct a Weibull from the available information. Figure 6.10 is the Weibull
based on seven cracked cases.

The rate at which the fleet would run into this problem was then examined, It was assumed
that all engines were susceptible and that the crack could be detected upon inspection. These
cases would be repaired by welding, and the units would be placed back into operation. This
inspection and repair could be continued until a fix was in place. The more permanent fix was to
hardeoat the area of the cracking with a plasma spray. It was also assumed that the fleet would
accumulate an average of 27 hours per month on each engine.

The engine would normally undergo inspection at 1850 cycles. This is equivalent to about
1080 hours of engine operation.

With these assumptions and assuming that the hardeoat fix would be applied to all new
engines, the number of unscheduled engine removals due to this problem was projected using
methods deseribed in Chapter 3. The results are illustrated in Figure 6.11. The forecast of 10 or
more engines developing cracks by the end of the first year and the total reaching about 40 by
the end of the following year resulted in implementation of the hardcoat fix.

6.19 CONCLUDING REMARKS

The plasma spray hardcoat has been incorporated into production units. In addition, as old
units are received for their normal overhaul, hardcoating is applied to these units as well. At this
writing, a total of only 15 engines have been identified with cracks over the eritical limit where it
could be said from the forecast that 40 additional engines would have been expected without the
fix. The quick action by the Air Force to implement the fix resulted in correcting the condition
in the field.
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CHAPTER 7

CONFIDENCE LIMITS ANB OTHER ASPECTS OF THE WEIBULL

7.1 FOREWORD

Now that some familiarity has been developed with the Weibull distribution and its
application in risk analysis and life testing, further applications will be discussed. First among
these will be confidence intervals about the Weibull parameters 8 and » and about the Weibull
line. Secondly, special applications in risk analysis will be discussed, namely Weibull
“Thorndike” charts. The next topic to be discussed will be shifting Weibulls in the case of
insufficient information about the underlying population. Lastly, other options available when
the Weibull distribution may not fit the failure data will be discussed.

7.2 CONFIDENCE INTERVALS

Confidence intervals are measuremenis of precision in estimating a parameter. A
confidence interval around an unknown parameter is an interval of numbers derived from
sample data that almost surely contains the parameter. The confidence level, usually 90% or
higher, is the frequency with which the interval calculation method could be expected to contain
the parameter if there were repeated applications of the method.

7.3 CONFIDENCE INTERVALS FOR 8 AND 1

Often it is of interest to determine how far from the “true” value an estimate of 8 or 5
might deviate. For example, if the times to failure of every bearing ever made and every bearing
to be made in the future were known, it would be possible to calculate 8 and 5 exactly. But, of
course; this is never the case; only a sample of bearings is available, The question is: how much
variation can be expected in the estimates of 8 and % {8 and ) from one sample size to the next?
If this variation is small, then the particular sample will yield estimates close to the true values.

The problem involving censoring with very few failures is not dealt with here. Reference V)
is recommended for this situation. However, for large, complete (no suspensions) samples of size
n, the confidence mterva]s for 8 and % can be approximated by equations (7.1) and (7.2),
respectwely

ﬁexp (ﬂzﬂi) =B S&XP (%E')

Vn Vn (7.1)
—-1.05Z 1.05Z,
fexp \/_"’2 ) <z <nexp ( 2 ) o

where Z,5, the upper «/2 point of the standard normal distribution, depends on what
confidence level is chosen. Table 7.1 gives Z_, for various (usual) confidence levels.

TABLE 7.1. CONFIDENCE LEVELS

Confidence Level Zose
99% 2576
95% 1.960
0% 1.645

) Applied Life Data Analysis, Nelson, 1982.
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These confidence intervals are o_nly-}-‘approximate since: (1) the estimates of § and 7 used are
linear regression estimates (from a theoretical standpeint maximum likelihood estimates would
be required, see Appendix D), (2) these estimates are only approximately normally distributed.

Example 7.1

Figure 7.1 shows a fitted Weibull distribution with 45 failures and no suspensions. A 90%
confidence interval for B is desired. The relevant information is as follows:

=45

=1.84
Confidence level = 90%
Z,./2= 1.645 (from Table 7.1}

Substituting into equation 7.1,

78(1.645) .78(1.645)

1.84 exp (;0——\/?-) =p=184exp (—0“7_'\/_;5_"‘

which reduces to 1.52 =< 8§ = 2.23
Example 7.2

Using the Weibull from Figure 7.1, what is a 90% confidence interval for 5? The relevant
information is:

n =45

A 958.88 8 =184
Confidence level = 90%
Z,s2=1.645 (from Table 7.1)

Substituting into equation 7.2,
1.05(1.645)

1.84+/45

—1.05(1.645)

1.84\/45

or, 833.7 = =11029

95888exp( )< <958889xp(
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7.4 CONFIDENCE INTERVALS FOR RELIABILITY

Another problem that appears in Weibull analyses is that of obtaining confidence intervals
for the reliability at a given point in time. The reliability at the point t is the probability of a life
of at least t' units, and will be denoted by R{t'). Again assume a large sample with no censored
observations.

The procedure is as follows:

1. Compute s = (2n(t) — 2 n()8 (7.32)
2. Compute Var (§) = [ 1.168+ 1.10 (#9) - 0.191381 . = (7.3b)
3. Computeu, =8 — Zos2 Zoia [Var@)2 (7.3¢)

u, = & + 2, (Vary2 (Z.j2 from Table 7.1)
4. Then the confidence interval is: exp (—exp (u,)) = R(t) <exp (—exp (u,)) (7.3d)
Example 7.3

Again using Figure 7.1, 2 90% confidence interval for the reliability at 700 cycles is desired.
The step-by-step procedure followa;

1. 4 = @n(700) — 20(958.88)) 1.84 = —0.579
2, Var () = [ 1.168 + ( —0.579)%(1.10) — 0.1913 (—0.579)] -; -——- =0.036
3. u;=—0.579 — (1.645) /0.036 = —0.890
u, = ~0.579 + (1.645) 1/0.036 = ~0.268
4. exp (—exp (—0.268) ) =< R (700) =< exp (—exp(—0.890) )
Therefore, the confidence interval is 0.465 = R(700) = 0.663

7.5 CONFIDENCE INTERVALS ABOUT A FAILURE TIME

Engineers are often interested in a confidence interval for the time associated with a given
failure. This confidence interval can be approximated by equation (7.4). Ninety percent
confidence intervals will be assumed for all confidence intervals about the Weibull line in this
section.

6005 = n[trr—grmoey]" 4 095 = e —pomsy]” (7.4)

where t;, 0.05 and t;, 0.95 are the failure times associated with the ith failure and F; (0.05) is the
5% rauk assocxated with the it® failure, while F; (0.95) is the 95% rank assocmted with the it
failure. Tables for F; (0.05) and F; (0.95) are in Appendlx B.
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Example 7.4

Suppose we are given the Weibull in Figure 7.2, 8 = 2.0, n = 100 hours, produced from 10
failures. The calculation procedure for the confidence interval about the first failure (26.1 hours)
follows:

F; (0.05) = 0.005 (from Appendix B)

1/2

1 _
t,, 005 = 100 [2ny—555-]* = 100 [0.00501]

= 7,08 hours

F;(0.95) = 0.258 (from Appendix B}
t1,0.95 = 100 [Pny—Tme]" = 100 0.29842

= 54.63 hours -

7.6 CONFIDENCE BANDS ON THE WEIBULL LINE

In Section 7.4 the confidence bands about a single reliability were caleulated, Simultaneous
confidence bands can also be placed on the Weibull distribution for complete samples,
Reference® contains the basic information for their construction. The results in Reference!®
have been extended to the Weibull Distribution. Equation (7.5) together with Table 7.2 can be
used to calculate 80% confidence bands about the Weibull Distribution.

(F(x) ~ Kn),F(x) + K(n)),

where

F =71 — —(xla)”
&) ¢ (1.5)

and F(x) is the estimate obtainred by substituting maximum likelihood estimates for the
parameters.

(@ «An Approach to the Construction of Parametric Confidence Bands on Cumulative Distribution Functions,”

Srinivasan and Kanofsky, Biemetrika, Vol 59, 3, 1972.

114




6 = T T T TII 7

15 NEEB!éLIa DISTRIBUTION 7
* = 100 HOURS /

= SAMPLE SIZE = 10 J

% FAILURES = 10

=0

n

0&?_ _____ [ SN DRI DU ' Iy N ——) e e e e o o s e o e e e . i e s S o o ]

o

%0

0.
[mn]
LLl
gm. /
8
o
E o i
510 /_
: /
n-. .
g 5. /
=

®
=
=
3
/
Q.8
1. 2. 3. 4. 5.8.7.8.9,10. - 3. 4 5. 6. 7.0.3.100. 2. 3. #. 5. 6. 7.8.9.1000,
TOTAL OPERATING TIME (HRS) .
FD 271881

Figure 7.2. Weibill Plot Where 8 = 2.0 and n = 100 for 10 Failures

®

neC



HABL

TABLE 72. CONFIDENCE
BOUNDS ON THE

WEIBULL LINE
Sample Size (n) Kin)
3 0.540
4 0.420
b 0.380
8 0.338
7 0.307
8 0.284
1] 0.269
10 0.248
11 0.237
12 0.222
13 0.213
14 0.204
16 0.187
20 0.169
25 0,152
80 0.141
35 0.126
40 0.119
45 0.117
50 0.106
75 0.086
100 0.074

Example 7.5

Consider the Weibull in Figure 7.3, 8 = 2.0 and n = 2000 hours, with a sample size of 7.
From Table 7.2 the critical value of K(7) = 0.307. Therefore,

1 — e~ GR/000P° _ 0,807 == F(x) = 1 —e~ /200" 4 0,307

for all x, 0 =< x < oo, with 90% confidence.

These bands are illustrated in Figure 7.3.
7.7 WEIBULL “THORNDIKE” CHARTS

A graphical method often used to determine the cumulative probabilities of the Poisson
distribution was named for F. Thorndike and is illustrated in Figure 7.4.

A random variable x has a Poisson distribution with a parameter p if P(X = x) = exp (- g}
pxl,x=0,1,238,....). (The Poisson distribution also arises as the limiting form of the
bmomml when the sample size becomes large.) As an illustration, suppose it is necessary to make
the statement: the expected number of occurrences is 3.0, and the actual number of occurrences
will be between x and y with 0.90 probability. To find x and v, use the Thorndike chart in
Pigure 7.4 enter the x — axis at 3.0 and read up to the point where 8.0 intersects the 0.05 and
0.95 lines extending from the y - axis. The values for “C” are found to be about 0 and 6.0
respectively. Therefore, with probability 0.9, if the expected number from a Poisson distribution
is 8.0, less than 6.0 will occur.
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In this same way a graphical technique similar to the Thorndike chart has been developed
for the Weibull distribution. These charts give the probability of having “C” or fewer failures by
any given time. They can also be used to place bounds about the number of failures occurring by
a given time.

Figures 7.5 through 7.12 are Weibull Thorndike charts for 8's of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,
4.0, and 5.0. To use these charts, determine the time (t) of interest (possibly the inspection
time), calculate t/n (y is the characteristic life from the Weibull), enter the x - axis of the chart
with the closest 8 to the one of interest, and then read the probabhility of having “C” or fewer
failures. Several examples of this technique and other uses follow.

The usefulness of this information can arise, for,_éxample, when the inspection interval is
two or more times the characteristic life of the Weibull failure mode of a part. When this
happens, the part fails, is replaced (made “good as new”), fails again, is replaced again, etc. How
often can this process continue? The Weibull Thorndike charts answer this question.

Example 7.6

Given Weibull parameters 8§ = 1.6 and 5 = 3000 hours, the probability of having three or
fewer failures per unit by 6000 hours is to be calculated.

In this case, t/3 = 6000/3000 = 2.0, and 8 = 1.5, so using Figure 7.7, enter the x - axis at t/n
= 2.0 and proceed up to the point where the line “C = 3” is intersected. Then the probability of
observing 3 or fewer failures can be read from the y - axis as 0.93.

Example 7.7

Suppose 8 = 1.5 and now t/n = 3.0. A 0.90 probability band can be placed about the
number of failures occurring by t/q = 3.0,

Again using Figure 7.7, enter the z - axis at 3.0 and proceed to find the “C” values where
0.05 and 0.95 probabilities intersect. This yields 1 and 5, respectively.

Example 7.8

In spare parts provisioning, suppose the number of spare parts to be provided are required
for a part having a § = 3.0 and an inspection time/characteristic life ratio {t/q} = 2.0. The
manager wishes to be 90% confident that he will not run out of parts. Using Figure 7.10,
entering the x - axis at 2.0 and proceeding to the point where 0.9 on the y - axis intersects the
“C” lines, no more than two spare parts are needed per delivered part.

Example 7.9

A new design rotor bearing has been tested for 22,000 hours. The current rotor bearing has
a limiting failure mode whose 8 = 1.7 and % = 4,937 hours. Sixz failures have been observed in the
test of the new design due to this mode. Is this unusual? With a t/y ratio = 22,000/4,937 = 4.45,
entering the Weibull Thorndike chart for 8 = 1.5 (Figure 7.7), the probability of having six or
more failures is approximately 1.0 - 0.90 = 0.1. Entering the Weibull Thorndike chart for § = 2.0
iFigure 7.8) the probability of having six or more failures is approximately 1.0 - 0.92 = 0.08,
Therefore, it can be stated that the probability of observing six failures by this time in the
redesigned rotor hearing is from 0.08 to 0.10. Hence the redesigned rotor bearing is not as good
as the current bearing,
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7.8 SHIFTING WEIBULLS

In all that has been done up to this point Weibull failure distributions have been estimated
from observed failures, often in combination with the populations of unfailed units. What can be
done if the times on each failure are known but the times on the population of unfailed units are
unknown?

This problem arises in the failure analysis of data from jet engines because all parts in an
engine are not serialized; that is, the time on the individual parts cannot be tracked. In many
engines only the most important 400-500 parts are serialized, while the others (possibly as many
as 10,000) are not.

Of course, if the part failure times are known, the engineer can generate a Weibull
distribution from the failures only, using the methods in Chapter 2. Fred Dauser, Statistician,
Commercial Products Division, Pratt & Whitney Aircraft Group, United Technologies
Corporation, developed a method to “adjust” this Weibull if the number of unfailed units in the
_population is known.

An outline of the method is as follows:

1. Plot the failure data on Weibull probahility paper.
2, Estimate the Weibull parameters 8 and 7.
3. Caleulate the mean time to failure (MTTF),

_Z times to failure for each part
MTTF = No., failures (7.5)

(now refer to Figure 7.13).
4. Draw a vertical line through the MTTF.

5. Calculate the proportion failed in the total population, No. failures/(No.
failures + No. suspensions), calculate the cumulative % failed point = (1-
g~ Proportion) 5 100, and draw a horizontal line from this point.

6. At the intersection of the vertical and horizontel lines draw a line parallel
to the failure distribution. This is an estimate of the “true” Weibull
distribution.,

Example 7.10

Suppose there have been four flange failures with times of 1165, 1300, 1393, and 1493
cycles in a population of 2500; however, the times on the unfailed units are unknown. The
procedure to estimate the “true” Weibull distribution can be used:

Steps1and 2: See Figure 7.14, 8 = 9.53, y = 1400.7 cycles

Step 3:

MTTF = 1165 - 1300 1— 1393 + 1493 _ 1337.8
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No. failures/(No. failures + No. suspensions) = (4/2500) = 0.0016
Therefore, cum % failed = [1 — e™00%1%] X 100 = 0.16%
Steps 4, 5 and 6:

See Figure 7.15

The estimated distribution has a 8 = 9.53 (same as the four failure Weibull), but the
characteristic life is now = 2629 cycles.

7.9 WEIBULL GOODNESS OF FIT

The procedure to test whether a sample is from a specified Weibull distribution can be
given in terms of the confidence bounds about the Weibull line developed in Section 7.6. Again,
‘complete samples will be assumed.

Procedure:

1. TUsing the Weibull estimates of 8 and 7 for the failure distributions,
calculate and plot the confidence bounds using the technigues of Section
7.6.

2.  Now place the hypothesized Weibull on this same plot, as a dotted line.

" 8. If this dotted line does not lie entirely within the confidence bands, then
consider the sample to be from a different Weibull distribution.

Example 7.11

Given a sample of seven failures with 8 = 2.0, = 2000, as in Section 7.6, can the
hypothesis that the sample comes from a Weibull distribution with 8 = 4.29 and 3 = 1500 be
rejected?

Plotting the hypothesized Weibull as a dotted line on Figure 7.3 gives Figure 7.16. One
would have to reject the hypothesis that this sample comes from a Weibull distribution with 8 =
4.29 and 5 = 1500 since the dotted line does not lie entirely within the bands.

7.10 COMPARING THE WEIBULL TO OTHER DISTRIBUTIONS

Figure 7.17 shows what happens if failure data from log-normal, normal, and extreme-
value distributions are plotted on Weibull probability paper. Since the log-normal is the most
frequent alternative in failure analysis, this will cover most of the practical cases that arise. For
example, suppose two plots like those on Figure 7.18 are given. In this case, the eye is unable to
discern which is “best,” the log-normal or the Weibull. The statistical test from Reference® can
be used to discriminate between these two failure distributions. The test can be set up in two
ways: to favor the log-normal or to favor the Weibull,

0 «Digerimination batween the log-normel and Weibull Distributions,” Dumonceaux and Antle, Technometrics, Vol
15, 4, 1973.
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Favoring the Weibull, calcuiate

W= (2med’) ™% ([tyf(t)] [taF (o)) ftuf(E)D

(7.6)
az E(Qnti—mz . *
= n is sample size
&= -%—E,Qnt,, t; is the time of failure

and f(t) = —g—- (—%) " e~ | the Weibull probability density function

W is compared to the appropriate table value for the confidence level desired (Table 7.3) and, if
W = W, the Weibull is rejected in favor of the log-normal.

TABLE 7.3. CRITICAL VALUES FOR TESTING
THE DIFFERENCE BETWEEN LOG
NORMAL AND WEIBULL
(FAVORING THE WEIBULL)

Number of Confidence Level
Failures 80% 90% 95%
20 1.008 1.041 1.067
a0 0.981 1.019 1041
40 0.980 1.005 1.026
50 0.974 (.986 1.016

Favoring the log-normal, calculate

W = @zef)? ([t 0t)] [t )] ... [LECEI DY (1.7

and compare to the appropriate table value for the confidence level desired (Table 7.4) and, if W
= Wiatter the log-normal is rejected in favor of the Weibull.

TABLE 74. CRITICAL VALUES FOR TESTING
THE DIFFERENCE BETWEEN LOG
NORMAL AND WEIBULL
(FAVORING THE LOG-NORMAL)

Number of Confidence Level
Failures 80% 9% 95%
20 1,016 1,038 1082
30 0.993 1.020 1.044
40 0.984 1.007 1.028
50 0.978 (.998 1.014

Example 7.12

The coverplate failures that went into the plots in Figure 7.18 occurred at 1989, 2160, 2569,
27568, 2813, 2979, 3016, 3283, 3294, 35603, 3853, 3916, 4294, 4462, 5178, 5716, 5984, 6378, 6556, and
7000 cyecles. The estimated Weibull parameters are 5 = 3.26, 1';‘ = 4523.8. The estimated log-
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normal parameters are ﬁ = 8.25014, g 0.373093 Which failure distribution fits the data better
with 80% confidence?

Both tests, favoring first the Weibull and then the log-normal, will be performed.

Favoring the Weibull, using equation (7.6),

W = [2 (2.141592) (2.71828) 0.373083% %2  ( [1989 f (1989)] . .. [7000 £ (7000)] ) ~4/20
:U=1.039

compared to a table value of 1.008. Hence, reject the Weibull,

Favoring the log-normal, using equation (7.7),

W = [2 (3.141592) (2.71828) 0.373093%] 12 ([1989 £ (1989)] ... [700 f (7000)] ) +1/20
= (0.962

compared to a table value of 1.015. Therefore, since the value W in the test that favors the
Weibull = Wy,11,, the Weibull can be rejected in favor of the log-normal. This same decision is
reached in the test favoring the log-normal; in this case, since W < W,,, . the log-normal
cannot be rejected in favor of the Weibull.

In conclusion, the log-normal failure distrihution seems to describe this coverplate failure
mode better than the Weibull distribution.

7.11 PROBLEMS

3

1 Given a Weibull derived from 40 data points with 8 = 1.5, n = 2000 hours; what
are the 90% confidence intervals for 8 and #?

2. What is the 90% confidence interval for Reliability at 1500 hours in problem 1?

3. What are the 90% confidence intervals about the first three failures in problem
1?

4, Given a Weibull with parameters 8 = 1, y = 1000 hours, what is the 90%

probability band on the number of failures to be expected by 4000 hours?
No seniaf #'S ™ pate .
@ A 10 point Weibull of failures %nemtgd and is illustrated in Figure
= 7.19. These failures are of a.non-serialize “part with a total population size of
2000. Adjust this 10 failure Weib or the entire sample size. Note: failure times
are 51, 79, 118, 164, 197, 230, 232, 327, 414, and 451 hours.

6. Are the Weibulls in Figures 7.20 and 7.21 significantly different? Assume the
Weibull in Figure 7.20 is true.

Soh_;tions to these problems are in Appendix J.
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APPENDIX A
GLOSSARY

The parameter of the Weibull distribution that determines
its shape and that implies the failure mode characteristic
(infant mortality, random, or wearout). It is also called the
slope parameter because it is estimated by the slopa of the
straight line on Weibull probability paper.

The difference between the true value of a population
parameter and the grand average of many parameter
estimates calculated from random samples drawn from the
parent population, Also called fixed error.

Data that contain suspended units.

Relative frequency that the (statistically derived) interval
contains the true value being estimated.

A mathematical function giving the cumulative probability
that a random quantity (e.g. 2 component’s life) will be
less than or equal to any given value.

The characteristic life of the Weibull distribution. 63.2%
of the lifetimes will be less than the characteristic life,
regardless of the value of 8, the Weibull slope parameter.

The instantaneous failure rate.

A failure mode characterized by a hazard rate that
decreases with age, i.e., new units are more likely to fail
than old units.

A mathematical model of a systern with random elements,
usually computer-adapted, whose outcome depends on the
application of randomly generated numbers,

Mean or average time between failures.

An unknown constant essociated with a population (such
as the characteristic life of a Weibull population or the
mean of a normal population),

The degtee of agreement among estimates calculated from
random samples drawn from a parent population. The
precision is usually measured by the standard deviation of
the estimates.

A failure mode that is independent of time, in the sense

that an old unit is as likely to fail as a new unit. In other
words, the hazard rate remains constant with age.
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14.

15.

16.

17.

18.

18.

20.

21.

Reliability

Risk Analysis

Suspension

Wearout

Weibayes/Weibest

Weibull
Analysis

Weibull Plot

The probability that, when operating in the manner
intended, a system will perform its intended function
satisfactorily for a specified interval of time.

A prediction of the number of failures expected to occur in
some future time period.

A test or operational unit that has not failed by the mode
under consideration at the fime of the life data analysis.

Zero age for the failure mode. It is known as the minimum
life parameter in the three-parameter Weibull
distribution: units have zero probability of failure prior to
b
A failure mode characterized by a hazard rate that
increases with age, i.e., old units are more likely to fail
than new units.

A method for constructing a Weibull distribution based on
assuming a value of 8, the Weibull slope parameter. It is
used when there are certain deficiencies in the data (for
instance, when operating time has accumulated, but no
failures have occurred).

Procedure for finding the Weibull distribution that best
describes a sample of unit lifetimes, in order to estimate
relisbility, determine failure mode characteristics, and
predict the occurrences of future failures.

A plot of time-to-failure data on Weibull probability
paper.

142

g




HNUC

APPENDIX B

MEDIAN RANKS, 5% RANKS, AND 95% RANKS

TABLE B.l. MEDIAN RANKS (%

Sample Size
Rank
QOrder 1 2 3 4 5 6 7 8 9 10
1 50.0 29.2 20.6 15.9 129 108 9.4 8.3 T4 68
2 0.7 50.0 3.5 aLg 264 22.8 20.1 179 16.2
3 79.3 81.4 50.0 42.1 36.4 320 28.6 26.8
4 84.0 68,6 57.8 §50.0 44.0 39.3 365
b 87.0 73.5 63.5 55.9 50.0 45.1
8 89.0 7.1 67.9 60.6 54.8
7 90.5 79.8 713 644
8 91.7 82,0 741
9 92,6 83,7
10 93.3
Sample Size
Rank
Order 11 12 13 14 16 16 17 18 19 20
1 61 5.6 6.1 4.8 4.5 42 3.9 37 356 34
2 14.7 13.6 125 117 10.9 102 9.6 2.1 8.6 8.2
3 23.6 21.8 20,0 186 174 16.3 15.4 145 13.8 3.1
4 32.3 29.7 276 256 239 224 21.1 20.0 189 18.0
5 41.1 318 35.0 326 304 286 28.9 254 241 22.9
] 50.0 45.9 42.5 39.6 36.9 34.7 2249 30,9 29.3 27.8
7 58.8 54.0 50.0 46.5 434 40.8 384 36.3 34.4 827
8 67.6 62.1 674 534 50.0 46.9 442 418 39.6 377
"9 764 70.2 64.9 60.4 56.5 63.0 60.0 47.2 44.8 428
10 85.2 783 724 674 63.0 59.1 86.7 62,7 50.0 415
11 93.8 86.4 79.9 74.3 69.56 65.2 61.6 68.1 55.1 52.4
12 94.3 874 81.3 76.0 L4 67.2 63.6 60.3 57.3
13 8948 88.2 825 715 73.0 69.0 66.5 62.2
14 95.1 88.0 83.6 788 4.5 70.6 67.2
15 95.4 89.7 846 799 76.8 721
16 95.7 80.3 85.4 81.0 7.0
17 86.0 90.8 86.1 819
18 g6.2 91.3 86.8
19 98.4 91.7
20 96.5
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TABLE B.1l. MEDIAN RANKS

Sample Size
Rank
Order 21 22 23 24 25 26 27 28 29 30
1 3.2 3.1 29 2.8 2.7 2.6 2.6 2.4 23 2.2
2 7.8 7.5 1 6.8 6.6 6.3 6.1 659 LN 5.5
3 12.6 119 114 10.9 10.5 101 9,7 9.4 2.1 88
4 17.2 164 15.7 5.0 144 13.9 134 129 12,6 121
5 21.8 20.9 20.0 19.1 184 17.7 170 16.4 159 16.3
6 26.6 25.3 24,2 23,2 22.3 21.5 20.7 20,0 193 18.6
7 30.2 208 28.6 214 26.3 25.3 24.3 23.56 22.7 219
8 35.9 34.3 32. 316 30.2 281 28.0 27.0 26.1 26.2
9 40.8 33.8 anl a5.8 34.2 329 31.7 30,6 29.5 28.6
10 45.3 43.2 414 39.7 981 36.7 353 4.1 329 3i.8
11 500 47.7 45.7 43.8 421 405 39.0 a7.6 36.3 361
12 B46 62.2 60.0 479 46.0 44.3 426 411 89.7 384
13 59.3 B6.T 64.2 52,0 50.0 481 46.3 447 431 41.7
14 64.0 6L1 68.5 56.1 53.9 518 50.0 48.2 46.6 45.0
15 68.7 65.8 62.8 60.2 57.8 55.6 b3.6 BLT 50.0 483
16 734 70.1 67.1 64.3 618 594 57.3 b5.2 534 516
17 781 746 714 68.4 65.7 63.2 60.9 G8.8 66.8 b4.9
18 82.7 79.0 6.7 725 69.7 67.0 64,6 62.3 60.2 58.2
19 874 83.5 79.9 76.7 736 70.8 68.2 66.8 63.6 615
20 92,1 88.0 84.2 80.8 77.8 4.6 1.9 69.4 67.0 64.8 . g
21 96.7 824 88.6 849 81.6 784 75.6 729 70.4 68.1
22 96.8 p2.8 89.0 85.6 82.2 79.2 T6.4 738 714
23 87.0 93.1 89.4 86.0 829 79.9 .2 4.7
24 a7.1 93.3 89.8 86.6 2356 80.6 78.0
25 a7.2 936 90.2 87.0 840 81.3
26 97.3 93.8 90.6 874 846
27 97.4 24.0 20.8 87.8
28 976 042 911
29 97.6 M4
30 7.7
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TABLE B.1. MEDIAN RANKS

Sample Size

Rank
Order 31 32 33 34 35 36 a7 38 39 40
1 2.2 21 20 20 1.9 1.9 1.8 18 1.7 1.7
2 5.3 b1 5.0 4.3 4.7 4.6 44 4.3 4.2 41
3 8.5 8.2 8.0 7.7 7.5 73 71 6.9 6.7 8.6
4 117 11.3 11.0 10.6 10.3 10.1 98 9.5 2.3 91
b 149 144 14.0 13.8 13.2 128 12.6 121 11.8 116
8 18.0 17.6 17.0 16.5 16.0 15.6 15.1 14.7 144 14.0
K 21.2 206 20.0 184 188 18.3 178 17.3 16.9 16.5
8 244 23.7 23.0 223 9 21.1 20.5 20.0 194 19.0
9 276 26.8 26.0 25.2 4.5 238 23.2 226 220 21.4
10 30.8 289 29.0 28.1 273 28.6 25.8 25.2 2456 239
11 34,0 32.9 320 31.0 0.1 20.3 28.5 21.8 271 26.4
12 are 36.0 35.0 33.9 33.0 2.1 312 304 288 289
13 404 39.1 38.0 a6.8 36.8 3.8 339 33.0 322 314
14 43.6 422 41.0 308 38.6 37.8 36.6 356 4.7 33.8
15 48.8 46.3 44.0 427 41,6 40.3 39.2 38.2 37.2 383
18 50,0 48.4 47.0 45.6 44.3 43.1 41.9 40.8 39.8 38.8
17 53.1 bL.b 60.0 48,6 47.1 45.8 448 434 423 413
18 56,3 b4.6 52.9 b1.4 50,0 48.6 47.3 46.0 44.9 43.8
19 59.6 b57.7 65.9 543 62.8 613 50.0 48.6 474 46.2
20 62.7 60.8 58.9 b57.2 5.6 54.1 52.6 51.3 50.0 48.7
21 656.9 63.9 61.9 60.1 584 56.8 55.3 63.9 52.6 51.2
22 69,1 87.0 64.9 63.1 61.3 59.6 B8.0 66.5 50.0 83.7
23 723 70.0 679 66.0 84.1 62.3 60.7 59.1 67.6 66.1
24 78.5 3.1 70.9 68.9 66.9 é6.1 83.3 817 60.1 68.6
26 78.7 78.2 73.9 718 69.8 87.8 66.0 84.3 62.7 61.1
26 819 79.3 76.9 747 726 70.6 68.7 66.9 65.2 63.6
.27 85.0 824 79.9 776 764 733 714 69.56 67.7 66.1
28 88,2 86.5 829 80.5 78.2 T76.1 4.1 72.1 70.3 68.5
29 014 836 859 834 811 78.8 78.7 4.7 728 7no
30 94.6 aL.7 83.9 86.3 839 81.6 0.4 713 T5.4 73.6
31 L riv 94.8 919 89.3 88.7 843 821 799 9 76.0
32 97.8 94.8 822 89.6 87.1 848 82.8 80.6 7856
33 97.9 95.1 92.4 89.8 874 85.2 83.0 80.9
T | 979 852 92.6 80.1 87.8 85.6 834
35 88.0 95.3 928 904 88.1 85.9
36 98.0 85.6 93.0 9%).8 884
37 98.1 96.6 93.2 90.8
38 98.1 96.7 93.3
39 98.2 95.8
40 98.2
4
7
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TABLE B.1.

MEDIAN RANKS

Sample Size
Rank
Order 41 42 43 44 45 46 47 48 49 50

1 1.6 ie 1.6 LB 1.5 14 14 14 14 1.3

2 4.0 38 3.8 3.7 a7 3.6 3.5 34 34 33

3 6.4 6.3 6.1 6.0 5.8 6.7 6.6 5.5 54 5.3

4 8.8 8.8 84 8.2 8.0 79 7.7 7.5 7.4 7.2

5 11.3 11.0 10.7 105 10.23 10.0 9.8 8.6 94 8.2

6 13.7 133 13.0 12.7 1256 12,2 119 119 114 112

7 16.1 16.7 15.3 150 14.7 14.3 140 18.7 13.5 13.2

8 188 18.1 17.6 17.2 16.9 16.6 16.2 15.8 15.6 15.2

9 20,9 204 20.0 18.5 19.1 18.7 183 179 17.6 17.2
10 23.3 22.8 22.3 21.8 213 20.8 204 20.0 19.6 19.2
11 256.8 25.2 248 24.0 23.6 23.0 22.5 220 21.6 211
12 28.2 27.6 269 26.3 25,7 25.1 246 24.1 23.6 23.1
13 30.6 29.9 29.2 28.6 27.8 27.8 26.7 26.2 25.6 26,1
14 33.0 32.2 316 30.8 §0.1 294 28.8 28.2 277 271
15 35.4 34.6 338 33.0 32.3 aiLe 30.9 30.3 28.7 29.1
16 37.9 37.0 86.1 35.3 84.5 33.8 33.1 324 3L.7 311
17 40.3 3.3 28.4 37.6 36.7 35,9 35.2 34.4 3.7 33.1
18 42.7 417 40.7 38.8 38.9 38.1 37.3 26,5 35.8 a5.1
19 46.1 440 43.0 421 411 40.2 304 386 37.8 310
20 476 464 453 443 43.3 424 41.5 40.6 398 35.0
21 50.0 48.8 41.6 46.6 46.56 44.6 43.6 427 41,8 41.0
22 52.4 5L1 50.0 48.8 47.7 46.7 46.7 44.8 439 430
23 54.8 53.6 62.8 511 50.0 438 47.8 46.8 45.9 45.0
24 57.2 55.9 54,6 b3.3 52.2 61.0 50.0 489 479 41.0
26 59.6 58,2 56.9 £b.6 M4 53.2 62.1 61.0 50.0 48.0
26 62.0 60.6 b8.2 57.8 568.6 656.3 54.2 53.1 52,0 650.9
27 64.5 62.9 61.5 60.1 68.8 57.6 56.3 65.1 64.0 52.9
28 66.9 85.3 63.8 62.4 61.0 69.7 584 b7.2 56.0 549
29 69.3 8.7 66.1 64.6 63.2 61.8 60.5 59.3 58.1 56.9
a0 3 Wi 70.0 684 66.9 65.4 64.0 62.6 61.3 €0.1 58.9
a1 741 724 70.7 69.1 67.6 66.1 64.7 634 62.1 60.9
32 76.6 74.8 73.0 714 68.8 68.3 66.9 65.5 64.1 62.9
a3 79.0 771 76.3 7.6 720 70.6 €9.0 B87.5 66.2 64.8
34 814 79.5 1.6 5.8 4.2 72.6 TL1 69.6 68.2 66.8
35 83.8 81.8 79.9 78.1 6.4 74.8 73.2 1.7 70.2 68.8
36 86.2 B4.2 82.3 80.4 78.6 76.9 76.3 3.7 72.2 708
37 88.7 86.6 848 82.7 80.8 79.1 774 75.8 74.3 728
38 911 88.9 86.9 848 3.0 81,2 79.5 779 763 4.8
a9 93.5 91.3 89.2 87.2 86.2 834 816 79.9 78.3 76.8
40 959 93.6 91.5 89.4 87.4 85.6 837 82.0 80.4 8.8
41 88.3 96.0 93.8 917 89.6 87.7 85.9 84.1 824 80.7
42 98.3 95,1 03.9 81.9 89.9 88.0 86.2 84.4 82.7
43 98.4 96.2 84.1 82.0 50.1 88.2 854 84.7
44 984 96.2 94.2 §2.2 80.3 88.6 86.7
45 88.4 968.3 84.3 924 90.5 88.7
46 98.6 864 94.4 92.6 90.7
47 N 885 96.6 94.56 a7
48 98.6 96.6 94.6
49 08.5 86.6
50 98.6
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